• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
N. C. Chung, “Improvements of the Renewable Energy Legislation for the Realization of 2050 Carbon Neutral,” Justice, vol. 190, pp. 5-27, 2022. DOI : 10.29305/tj.2022.6.190.05DOI
2 
T. Xu, W. Gao, F. Qian, Y. Li, “The implementation limitation of variable renewable energies and its impacts on the public power grid,” Energy, vol. 239, pp. 1228-1233, 2022. DOI : 10.1016/j.energy.2021.121992DOI
3 
J. Huang, P. Yalla, T. Yong, “New real time market applications at the California independent system operator (CAISO),” IEEE PES Power Systems Conference and Exposition, vol. 3, pp. 1228-1233, 2004. DOI : 10.1109/PSCE.2004.1397599DOI
4 
Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, J. Østergaard, “Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response,” Applied Energy, vol. 138, pp. 695-706, 2015. DOI : 10.1016/j.apenergy.2014.10.048DOI
5 
P. Denholm, M. Hand, “Grid flexibility and storage required to achieve very high penetration of variable renewable electricity,” Energy Policy, vol. 39, pp. 1817-1830, 2011. DOI : 10.1016/j.enpol.2011.01.019DOI
6 
S. W. Lee, “Pilot Project of Electricity Market Reform in JEJU Island,” The Korean Institute of Electrical Engineers, vol. 73, no. 9, pp. 7-14, 2024.URL
7 
J. Li, C. Wang, H. Wang, “Optimal Energy Storage Scheduling for Wind Curtailment Reduction and Energy Arbitrage: A Deep Reinforcement Learning Approach,” ArXiv, vol. arXiv:2304.02239, 2023. DOI:10.48550/arXiv.2304.02239DOI
8 
M. Miri & M. McPherson, “Demand response programs: Comparing price signals and direct load control,” Energy, vol. 288, pp. 1-17, 2024. DOI : 10.1016/j.energy.2023.129673DOI
9 
M. H. Shams, H. Niaz, B. Hashemi, J. J. Liu, P. Siano, A. A. Moghaddam, “Artificial intelligence-based prediction and analysis of the oversupply of wind and solar energy in power systems,” Energy Conversion and Management, vol. 250, 2021. DOI : 10.1016/j.enconman.2021.114892DOI
10 
M. H. Shams, H. Niaz, J. Na, A. A. Moghaddam, J. J. Liu, “Machine learning-based utilization of renewable power curtailments under uncertainty by planning of hydrogen systems and battery storages,” Journal of Energy Storage, vol. 41, 2021. DOI : 10.1016/j.est.2021.103010.DOI
11 
E. Memmel, T. Steens, S. Schluters, R. Volker, F. Schuldt, K. V. Maydell, “Predicting Renewable Curtailment in Distribution Grids Using Neural Networks,” IEEE Access, vol. 11, pp. 20319-20336, 2023. DOI : 10.1109/ACCESS.2023.3249459DOI
12 
H. Hadian, F. Naderkhani, “Deep Learning-Based Models for Wind and Solar Curtailment Forecasting,” International Conference on Energy Harvesting, Storage, and Transfer, vol. 120, 2023. DOI : 10.11159/ehst23.120DOI
13 
A. Bunodiere, H. S. Lee, “Renewable Energy Curtailment: Prediction Using a Logic-Based Forecasting Method and Mitigation Measures in Kyushu, Japan,” Energy, vol. 13, no. 18, pp. 2-24, 2020. DOI : 10.3390/en13184703DOI
14 
R. Golden, B. Paulos, “Curtailment of Renewable Energy in California and Beyond,” The Electricity Journal, vol. 28, no. 6, pp. 36-50, 2015. DOI : 10.1016/j.tej.2015.06.008DOI
15 
J. R. Cancelo, A. Espasa, “Modelling and forecasting daily series of electricity demand,” Investigaciones Economicas, vol. 20, pp. 359-376, 1996.URL
16 
Y. Y. Yan, “Climate and residential electricity consumption in Hong Kong,” Energy, vol. 23, no. 1, pp. 17-20, 1998. DOI : 10.1016/S0360-5442(97)00053-4DOI
17 
D. Markovics, M. J. Mayer, “Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction,” Renewable and Sustainable Energy Reviews, vol. 161, 2022. DOI : 10.1016/j.rser.2022.112364DOI
18 
C. Liu, X. Zhang, S. Mei, Z. Zhen, M. Jia, Z. Li, H. Tang, “Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness,” Applied Energy, vol. 313, 2022. DOI : j.apenergy.2022.118769DOI
19 
J. S. Stein, W. F. Holmgren, J. Forbess, C. W. Hansen, “PVLIB: Open source photovoltaic performance modeling functions for Matlab and Python,” 2016 IEEE 43rd PVSC, vol. 43, pp. 3425-3430, 2016. DOI : 10.1109/PVSC.2016.7750303DOI
20 
T. Chen, C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Association for Computing Machinery, pp. 785–794, 2016. DOI : 10.1145/2939672.2939785DOI
21 
B. O. Kvalseth, “Cautionary Note about R2,” The American Statistician, vol. 39, no. 4, pp. 279-285, 1985. DOI : 10.2307/2683704DOI
22 
T. Chai, R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)?,” Geoscientific Model Development Discussions, vol. 7, pp. 1525-1534, 2014. DOI : 10.5194/gmdd-7-1525-2014DOI
23 
B. Acun, B. Morgan, H. Richardson, N. Steinsultz, C. J. Wu, “Unlocking the Potential of Renewable Energy Through Curtailment Prediction,” ArXiv, vol. abs/2405.18526, 2024. DOI : 10.48550/arXiv.2405.18526DOI