• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ayari, A. and Bouamama, S. “Acd3gpso: automatic clustering-based algorithm for multi-robot task allocation using dynamic distributed double-guided particle swarm optimization,” Assembly Automation, vol, 40. no. 2, pp. 235-247, 2019. https://doi.org/10.1108/aa-03-2019-0056DOI
2 
Hussein, A. and Khamis, A. “Market-based approach to multi-robot task allocation,” 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR), 2013. https://doi.org/10.1109/icbr.2013.6729278DOI
3 
Martín, J. G., Hanif, M., Hatanaka, T., Maestre, J. M. M., & Camacho, E. F. “Predictive receding-horizon multi-robot task allocation with moving tasks,” 2022 European Control Conference (ECC), pp. 2030-2035, 2022. https://doi.org/10.23919/ecc55457.2022.9838127DOI
4 
Hussein, A., Marín-Plaza, P., García, F., & Armingol, J. M. “Hybrid optimization-based approach for multiple intelligent vehicles requests allocation,” Journal of Advanced Transportation, 2018, 1-11, 2018. https://doi.org/10.1155/2018/2493401DOI
5 
Kalempa, V. C., Piardi, L., Limeira, M., & Oliveira, A. S. d. “Multi-robot preemptive task scheduling with fault recovery: a novel approach to automatic logistics of smart factories,” Sensors, vol. 21, no. 19, pp. 6536, 2021. https://doi.org/10.3390/s21196536DOI
6 
Chawla, S. and Gionis, A. k-means–: a unified approach to clustering and outlier detection. Proceedings of the 2013 SIAM International Conference on Data Mining, 2013. https://doi.org/10.1137/1.9781611972832.21DOI
7 
Liu, C., & Kroll, A. “A centralized multi-robot task allocation for industrial plant inspection by using a* and genetic algorithms,” In Artificial Intelligence and Soft Computing: 11th International Conference, ICAISC 2012, Zakopane, Poland, April 29-May 3, 2012, Proceedings, Part II 11 pp. 466-474. Springer Berlin Heidelberg.URL
8 
Miller, C. E., Tucker, A. W., & Zemlin, R. A. “Integer programming formulation of traveling salesman problems,” Journal of the ACM (JACM), vol. 7, no. 4, pp. 326-329, 1960.URL
9 
Grenouilleau, F., Van Hoeve, W. J., & Hooker, J. N. “A multi-label A* algorithm for multi-agent pathfinding,” In Proceedings of the international conference on automated planning and scheduling Vol. 29, pp. 181-185, 2019.URL
10 
Majumder, A., Majumder, A., & Bhaumik, R. “Teaching–learning-based optimization algorithm for path planning and task allocation in multi-robot plant inspection system,” Arabian Journal for Science and Engineering, vol. 46, no. 9, pp. 8999-9021, 2021.URL
11 
Ran, X., Zhou, X., Lei, M., Tepsan, W., & Deng, W. “A novel k-means clustering algorithm with a noise algorithm for capturing urban hotspots,” Applied Sciences, vol. 11, no. 23, pp. 11202, 2021. https://doi.org/10.3390/app112311202DOI
12 
Geyer, S., Papaioannou, I., & Straub, D. “Cross entropy-based importance sampling using gaussian densities revisited,” Structural Safety, no. 76, pp. 15-27, 2019. https://doi.org/10.1016/j.strusafe.2018.07.001DOI
13 
R, Y. H., Phal, S. M., Hukkeri, T. S., Xu, L., Shobha, G., Shetty, J., … & Chala, A. “Massively scalable density based clustering (dbscan) on the hpcc systems big data platform,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 1, pp. 207, 2021. https://doi.org/10.11591/ijai.v10.i1.pp207-214DOI
14 
Hossain, M. Z., Akhtar, M. N., Ahmad, R., & Rahman, M. “A dynamic k-means clustering for data mining,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 2, pp. 521, 2019. https://doi.org/10.11591/ijeecs.v13.i2.pp521-526DOI
15 
Zhang, X., He, Y., Jin, Y., Qin, H., Azhar, M., & Huang, J. Z. A robust k-means clustering algorithm based on observation point mechanism. Complexity, 2020, 1-11. 2020. https://doi.org/10.1155/2020/3650926DOI
16 
Elango, M., Nachiappan, S., & Tiwari, M. K. “Balancing task allocation in multi-robot systems using K-means clustering and auction based mechanisms,” Expert Systems with Applications, vol. 38, no. 6, pp. 6486-6491, 2011.URL
17 
You, J., Jia, J., Pang, X., Wen, J., Shi, Y., & Zeng, J. “A Novel Multi-Robot Task Assignment Scheme Based on a Multi-Angle K-Means Clustering Algorithm and a Two-Stage Load-Balancing Strategy” Electronics, vol. 12, no. 18, pp. 3842, 2023.URL
18 
Jianping, C., Yimin, Y., & Yunbiao, W. “Multi-robot task allocation based on robotic utility value and genetic algorithm,” In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems vol. 2, pp. 256-260. IEEE. 2009, November.URL