• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Gaona-C´ardenas. L.-F, V´azquez-Nava. N, Ru´ız-Mart´ınez. O.-F, Espinosa-Calder´on. A, Barranco-Guti´errez. A.-I and Rodr´ıguez-Licea. M.-A, “An Overview on Fault Management for Electric Vehicle Onboard Chargers,” Electronics 2022, 11, 1107, 2022. DOI:10.3390/electronics11071107DOI
2 
Pham. T. T. L., Richardeau. F. and Gateau. G., “Diagnosis strategies and reconfiguration of a 5-level double-boost PFC with fault-tolerant capability,” IEEE International Symposium on Industrial Electronics, pp. 1857-1862, 2011. DOI:10.1109/ISIE.2011.5984440DOI
3 
Li, G., Yang, D., Zhou, B., Liu, Y. F. and Zhang, H. “A topology-reconfigurable fault-tolerant two-and-single stage AC–DC converter for high reliability applications,” IEEE Transactions on Industrial Electronics, vol. 70, no. 4, pp. 3708-3716, 2022. DOI:10.1109/TIE.2022.3174236DOI
4 
Liu, C., Yang, Z., Xiang, G. and Yu, Y. “A statistical feature-based anomaly detection method for pfc using canonical correlation analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-11, 2022. DOI:10.1109/TIM.2022.3210944DOI
5 
Hu, K., Meng, X., Liu, Z., Xu, J., Lin, G. and Tong, L. “Flux-based open-switch fault diagnosis and fault tolerance for IM drives with predictive torque/flux control,” IEEE Transactions on Transportation Electrification, vol. 8, no. 4, pp. 4595-4606, 2022. DOI:10.1109/TTE.2022.3161988DOI
6 
Liao, J., Qin, Z., Purgat, P., Zhou, N., Wang, Q. and Bauer, P., “Fault protection and coordinated controls of power flow controller in a flexible DC grid,” In 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), pp. 893-898, 2021. DOI:10.1109/PEMC48073.2021.9432559DOI
7 
Kherif, O., Benmahamed, Y., Teguar, M., Boubakeur, A. and Ghoneim, S. S., “Accuracy improvement of power transformer faults diagnostic using KNN classifier with decision tree principle,” IEEE Access, vol. 9, pp. 81693-81701, 2021. DOI: 10.1109/ACCESS.2021.3086135DOI
8 
Haeri, H., Sarfarazi, V. and Fatehi Marji, M. “Numerical simulation of the interaction between normal fault and bedding planes using PFC,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, pp. 573-588, 2021. DOI:10.1007/s40996-020-00558-8DOI
9 
Kyeong-Yeong Lee, Se-Heon Lim, Tae-Geun Kim, Kyung-Min Song and Sung-Guk Yoon, “GAN-Based Data Augmentation Technique for Various Transmission Line Fault Data,” The Transactions of the Korean Institute of Electrical Engineers, vol. 73, no. 8, pp.1318-1326, 2024. DOI:10.5370/KIEE.2024.73.8.1318DOI
10 
Luo, W., Yang, W., He, J., Huang, H., Chi, H., Wu, J. and Shen, Y. “Fault diagnosis method based on two-stage GAN for data imbalance,” IEEE Sensors Journal, vol. 22, Issue 22, pp. 21961-21973, 2022. DOI:10.1109/JSEN.2022.3211021DOI
11 
Ren, Z., Zhu, Y., Liu, Z. and Feng, K. “Few-shot GAN: Improving the performance of intelligent fault diagnosis in severe data imbalance,” IEEE Transactions on instrumentation and measurement, vol. 72, pp. 1-14, 2023. DOI:10.1109/TIM.2023.3271746DOI
12 
Yang, J., Liu, J., Xie, J., Wang, C. and Ding, T., “Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12, 2021. DOI:10.1109/TIM.2021.3119135DOI
13 
Li, W., Liu, D., Li, Y., Hou, M., Liu, J., Zhao, Z. and Deng, W. “Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data,” Structural Health Monitoring, vol. 24, Issue 3, 2024. DOI:10.1177/14759217241254121DOI
14 
Gao, H., Zhang, X., Gao, X., Li, F. and Han, H. “ICoT-GAN: Integrated convolutional transformer GAN for rolling bearings fault diagnosis under limited data condition,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-14, 2023. DOI:10.1109/TIM.2023.3271729DOI
15 
Du, Z., Chen, K., Chen, S., He, J., Zhu, X. and Jin, X. “Deep learning GAN-based data generation and fault diagnosis in the data center HVAC system,” Energy and Buildings, vol. 289, 113072, 2023. DOI:10.1016/j.enbuild.2023.113072DOI
16 
Liu, J., Zhang, C. and Jiang, X. “Imbalanced fault diagnosis of rolling bearing using improved MsR-GAN and feature enhancement-driven CapsNet,” Mechanical Systems and Signal Processing, vol. 168, 108664, 2022. DOI:10.1016/j.ymssp.2021.108664DOI
17 
Goodfellow. I, Pouget-Abadie. J, Mirza. M, Xu. B, Warde-Farley. D, Ozair. S, Aaron. C and Bengio, Y., “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014. DOI:10.48550/arXiv.1406.2661DOI
18 
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin, “Attention Is All You Need,” Advances in neural information processing systems, vol. 30, 2017. DOI:10.48550/arXiv.1706.03762DOI
19 
Li, W., Chen, J., Wang, Z., Shen, Z., Ma, C. and Cui, X., “Ifl-gan: Improved federated learning generative adversarial network with maximum mean discrepancy model aggregation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 12, pp. 10502-10515, 2022. DOI:10.1109/TNNLS.2022.3167482DOI
20 
Pradipta, G. A., Wardoyo, R., Musdholifah, A., Sanjaya, I. N. H. and Ismail, M., “SMOTE for handling imbalanced data problem: A review,” Sixth international conference on informatics and computing (ICIC), IEEE, pp. 1-8, 2021. DOI:10.1109/ICIC54025.2021.9632912DOI
21 
Kazemnejad, A., Padhi, I., Natesan Ramamurthy, K., Das, P. and Reddy, S., “The impact of positional encoding on length generalization in transformers,” Advances in Neural Information Processing Systems, vol. 36, pp. 24892-24928, 2023. DOI:10.48550/arXiv.2305.19466DOI
22 
Chu, X., Tian, Z., Zhang, B., Wang, X. and Shen, C., “Conditional positional encodings for vision transformers,” arXiv preprint arXiv:2102.10882, 2021. DOI:10.48550/arXiv.2102.10882DOI
23 
Chen, Y., Liu, S. and Wang, X., “Learning continuous image representation with local implicit image function,” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8628-8638, 2021. DOI:10.48550/arXiv.2012.09161DOI