KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2025-09
(Vol.74 No.09)
10.5370/KIEE.2025.74.9.1440
Journal XML
XML
PDF
INFO
REF
References
1
M. Choobineh and S. Mohagheghi, “Optimal energy management in an industrial plant using on-site generation and demand scheduling,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1945-1952, 2016.
2
Y.-M. Shin, Y.-M. Do, T.-W. Heo and I.-W. Lee, “Common framework for factory energy management systems (FEMS),” Proc. Korean Institute of Communications and Information Sciences (KICS) Conf., pp. 453-454, 2022.
3
S.-H. Kim, T.-W. Heo and I.-W. Lee, “Electricity consumption analysis and prediction using quality control charts in factory energy management systems,” Proc. Korean Institute of Electrical Engineers (KIEE) Summer Conf., pp. 2412-2413, 2023.
4
S.-H. Kim, Y.-M. Shin, Y.-M. Do, T.-W. Heo and I.-W. Lee, “Data preprocessing method for lightweight anomaly diagnosis algorithms in factory energy management systems (FEMS),” Proc. Korean Institute of Electrical Engineers (KIEE) Summer Conf., pp. 1744-1745, 2022.
5
W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, “Short-term residential load forecasting based on LSTM recurrent neural network,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841-851, 2019.
6
K. Chen, K. Chen, Q. Wang, Z. He, J. Hu and J. He, “Short-term load forecasting with deep residual networks,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3943-3952, 2019.
7
J. Bedi and D. Toshniwal, “Empirical mode decomposition based deep learning for electricity demand forecasting,” IEEE Access, vol. 6, pp. 49144-49156, 2018.
8
F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang and R. Szabados, “An overview of AMI data preprocessing to enhance the performance of load forecasting,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pp. 1-8, 2014.
9
A. F. Atiya, S. M. El-Shoura, S. I. Shaheen and M. S. El-Sherif, “A comparison between neural-network forecasting techniques-case study: river flow forecasting,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 402-409, 1999.
10
A. Garulli, S. Paoletti and A. Vicino, “Models and techniques for electric load forecasting in the presence of demand response,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1087-1097, 2015.