• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Choobineh and S. Mohagheghi, “Optimal energy management in an industrial plant using on-site generation and demand scheduling,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1945-1952, 2016.DOI
2 
Y.-M. Shin, Y.-M. Do, T.-W. Heo and I.-W. Lee, “Common framework for factory energy management systems (FEMS),” Proc. Korean Institute of Communications and Information Sciences (KICS) Conf., pp. 453-454, 2022.URL
3 
S.-H. Kim, T.-W. Heo and I.-W. Lee, “Electricity consumption analysis and prediction using quality control charts in factory energy management systems,” Proc. Korean Institute of Electrical Engineers (KIEE) Summer Conf., pp. 2412-2413, 2023.URL
4 
S.-H. Kim, Y.-M. Shin, Y.-M. Do, T.-W. Heo and I.-W. Lee, “Data preprocessing method for lightweight anomaly diagnosis algorithms in factory energy management systems (FEMS),” Proc. Korean Institute of Electrical Engineers (KIEE) Summer Conf., pp. 1744-1745, 2022.URL
5 
W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, “Short-term residential load forecasting based on LSTM recurrent neural network,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841-851, 2019.DOI
6 
K. Chen, K. Chen, Q. Wang, Z. He, J. Hu and J. He, “Short-term load forecasting with deep residual networks,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3943-3952, 2019.DOI
7 
J. Bedi and D. Toshniwal, “Empirical mode decomposition based deep learning for electricity demand forecasting,” IEEE Access, vol. 6, pp. 49144-49156, 2018.DOI
8 
F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang and R. Szabados, “An overview of AMI data preprocessing to enhance the performance of load forecasting,” in Proc. IEEE Ind. Appl. Soc. Annu. Meeting, pp. 1-8, 2014.DOI
9 
A. F. Atiya, S. M. El-Shoura, S. I. Shaheen and M. S. El-Sherif, “A comparison between neural-network forecasting techniques-case study: river flow forecasting,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 402-409, 1999.DOI
10 
A. Garulli, S. Paoletti and A. Vicino, “Models and techniques for electric load forecasting in the presence of demand response,” IEEE Trans. Control Syst. Technol., vol. 23, no. 3, pp. 1087-1097, 2015.DOI