• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
T. Zhou, W. Xia, F. Zhang, B. Chang, W. Wang, Y. Yuan, E. Konukoglu and D. Cremers, “Image Segmentation in Foundation Model Era: A Survey,” arXiv preprint arXiv:2408.12957, 2024.DOI
2 
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, 2018. DOI:10.1109/TPAMI.2017.2699184DOI
3 
O. Ronneberger, P. Fischer and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 234-241, 2015. DOI:10.1107/978-3-319-24574-4_28DOI
4 
V. Badrinarayanan, A. Kendall and R. Cipolla, “SegNet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 2017. DOI:10.1109/TPAMI.2016.2644615DOI
5 
H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid scene parsing network,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2881-2890, 2017. DOI:10.1109/CVPR.2017.660DOI
6 
S. C. Yurtkulu, Y. H. Şahin and G. Unal, “Semantic Segmentation with Extended DeepLabv3 Architecture,” 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, pp. 1-4, Apr. 2019. DOI:10.1109/SIU.2019.8806244DOI
7 
G. Hinton, O. Vinyals and J. Dean, “Distilling the knowledge in a neural network,” Neural Information Processing Systems (NIPS) Workshop, 2014.DOI
8 
Y. Zhang, T. Xiang, T. Hospedales and H. Lu, “Deep mutual learning,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 4320-4328, 2018. DOI:10.1109/CVPR.2018.00454DOI
9 
S. H. Lee, D. H. Kim and B. C. Song, “Self-supervised knowledge distillation using singular value decomposition,” in Proc. European Conf. Computer Vision (ECCV), pp. 335-350, 2018. DOI: 10.1007/978-3-030-01246-5_21DOI
10 
B. Cheng, A. Schwing and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” Advances in Neural Information Processing Systems (NeurIPS), 2021.URL
11 
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1251-1258, 2017. DOI:10.1109/CVPR.2017.195DOI
12 
Z. Wang, M. Berman, A. Rannen-Triki, P. Torr, D. Tuia, T. Tuytelaars, et al., “Revisiting evaluation metrics for semantic segmentation: Optimization and evaluation of fine-grained intersection over union,” Neural Information Processing Systems (NeurIPS), 2023.URL
13 
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 618-626, 2017. DOI: 10.1109/CVPR.2017.74DOI