KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2025-10
(Vol.74 No.10)
10.5370/KIEE.2025.74.10.1645
Journal XML
XML
PDF
INFO
REF
References
1
EA, “Energy and AI,” Apr. 2025. Available : https://www.iea.org/
2
Ministry of Trade, Industry and Energy, “The 11th Basic Plan for Long-term Electricity Supply and Demand (2024-2038),” Mar. 2025. Available : https://www.motie.go.kr/
3
IEA, “Electricity 2024 : Analysis and Forecast to 2026,” Jan. 2024. Available : https://www.iea.org/
4
Kong, X., et al., “A comprehensive review of power flow tracing methods and their applications in modern power systems,” Energies, vol. 16, no. 18, pp. 5974, Aug. 2023. DOI:10.1109/ACCESS.2020.2968461
5
Rofiqul, I. & Ramadhan, R., “Application of power flow tracing methods for cost allocation in distribution networks with high DG penetration,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 1, pp. 58-66, Sep. 2024. DOI:10.11591/ijeecs.v37.i2.pp715-729
6
D. Cao, et al., “Physics-Informed Graphical Learning and Bayesian Averaging for Robust Distribution State Estimation,” in IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 2879-2892, Mar. 2024. DOI:10.1109/TPWRS.2023.3282413
7
J. Bialek, “Tracing the Flow of Electricity,” in Generation, Transmission and Distribution, IEE Proceedings, vol. 143, no. 4, pp. 313-320, Jul. 1996. DOI:10.1049/ip-gtd:19960461
8
T. Ströher and J. Strüker, “Power Flow Tracing: Analyzing the Embedding of Eleks Dakar in Research and Practice,” Fraunhofer-Institute for Applied Information Technology, Dec. 2024. Available : https://www.fraunhofer.de/en.html
9
Sudhakar Uppalapati, et al., “Precision biochar yield forecasting employing random forest and XGBoost with Taylor diagram visualization,” Sci Rep 15, 7105, Feb. 2025. DOI:10.1038/s41598-025-91450-w
10
Hamad, S.A., Ghalib, M.A., Munshi, A. et al., “Evaluating machine learning models comprehensively for predicting maximum power from photovoltaic systems,” Sci Rep 15, 10750, Mar. 2025. DOI:10.1038/s41598-025-91044-6