• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
C. Chatuanramtharnghaka, Y. Aoyagi, M. Z. A. Ab Kadir, 2024, Review of demand response programs in the context of renewable energy and electric vehicles, World Electric Vehicle Journal, Vol. 15, No. 9, pp. 412DOI
2 
2025, Demand Flexibility: The Value and Participation MechanismsDOI
3 
J. Jiang, Y. Gao, F. Wen, 2020, Smart charging strategies for electric vehicles to enhance power system flexibility, Journal of Cleaner Production, Vol. 278, pp. 123-136DOI
4 
S. D. Braithwait, 2010, Accuracy of Alternative Baseline Methods for Measuring Demand Response Program Impacts, pp. 1-18Google Search
5 
O. Valentini, N. Andreadou, P. Bertoldi, A. Lucas, I. Saviuc, E. Kotsakis, 2022, Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load, Energies, Vol. 15, No. 14DOI
6 
X. Wang, W. Tang, 2020, Analysis and Evaluation of Baseline Manipulation in Demand Response Programs, arXiv preprint arXiv:2011.10681Google Search
7 
H. G. R. Harikrishnan, S. Sreedharan, N. B. C., 2025, Advanced short‑term load forecasting for residential demand response: An XGBoost‑ANN ensemble approach, Electric Power Systems Research, Vol. 242Google Search
8 
Y. Wang, S. Sun, X. Zeng, Y. Kong, J. Chen, 2021, Short‑term load forecasting of industrial customers based on TCN‑LightGBM, IEEE Transactions on Power Systems, Vol. 36, No. X, pp. 1984-1997Google Search
9 
A. Gassar, 2024, Short‑Term Energy Forecasting to Improve the Estimation of Demand Response Baselines in Residential Neighborhoods: Deep Learning vs. Machine Learning, Buildings, Vol. 14, No. 7Google Search
10 
D. Zhou, M. Balandat, C. Tomlin, 2016, Residential Demand Response Targeting Using Machine Learning with Observational Data, arXiv preprint arXiv:1607.00595Google Search
11 
X. Wang, W. Tang, 2020, Analysis and Evaluation of Baseline Manipulation in Demand Response Programs, arXiv preprint arXiv:2011.10681Google Search
12 
2022, Demand response performance and uncertainty: A systematic literature review, Elsevier Energy Research & Social ScienceGoogle Search
13 
O. Valentini, N. Andreadou, P. Bertoldi, A. Lucas, I. Saviuc, E. Kotsakis, 2022, Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load, Energies, Vol. 15, No. 14DOI
14 
Sae-Hong Kim, Joon-Hee Lee, Seung-Ki Sul, Dong-Hwa Park, 2014, A Framework for Baseline Load Estimation in Demand Response, pp. 644-649Google Search
15 
2008, Demand Response Measurement &VerificationGoogle Search
16 
A. A. A. Gassar, 2024, Short-Term Energy Forecasting to Improve the Estimation of Demand Response Baselines in Residential Neighborhoods: Deep Learning vs. Machine Learning, Buildings, Vol. 14, No. 7DOI
17 
Y. Roy, A. Ishmam, K. A. Taher, 2021, Demand Forecasting in Smart Grid Using Long Short‑Term Memory, arXiv preprint arXiv:2107.13653Google Search
18 
X. Zhang, F. Gao, L. Xu, 2022, A Prophet‑LSTM Hybrid Model for Peak Load Forecasting in Distribution Networks, Energies, Vol. 15, No. 15Google Search
19 
Margaux Brégère, Ricardo J. Bessa, 2020, Simulating Tariff Impact in Electrical Energy Consumption Profiles with Conditional Variational Autoencoders, arXiv preprintGoogle Search
20 
Haris Mansoor, Sarwan Ali, Imdadullah Khan, Naveed Arshad, Muhammad Asad Khan, Safiullah Faizullah, 2019, Short-Term Load Forecasting Using AMI Data (FMF), arXiv preprintGoogle Search
21 
Datong Zhou, Maximilian Balandat, Claire Tomlin, 2016, Residential Demand Response Targeting Using Machine Learning with Observational Data, arXiv preprintGoogle Search
22 
Yang Xu, Weijun Gao, Fanyue Qian, 2021, Potential Analysis of the Attention-Based LSTM Model in Ultra‑Short‑Term Forecasting of Building HVAC Energy Consumption, Frontiers in Energy ResearchGoogle Search
23 
Ke Hua, Zhichao Wang, Feng Zuo, Qihang Wang, 2022, Short-Term Electricity Load Forecasting Method Based on Attention and Time Series ForecastingGoogle Search
24 
Sheng Ding, Dongyi He, Guiran Liu, 2024, Improving Short-Term Load Forecasting with Multi-Scale Convolutional Neural Networks and Transformer-Based Multi-Head Attention Mechanisms, Electronics, Vol. 13, No. 24Google Search
25 
Shuaishuai Li, Weizhen Chen, 2025, A Study on Interpretable Electric Load Forecasting Model with Spatiotemporal Feature Fusion Based on Attention Mechanism, Technologies, Vol. 13, No. 6Google Search
26 
Jing Xiong, Yu Zhang, 2023, A Unifying Framework of Attention‑Based Neural Load Forecasting, IEEE AccessGoogle Search
27 
Chunrui Lei, Heng Zhang, Zhigang Wang, Qiang Miao, 2024, Multi-Model Fusion Demand Forecasting Framework Based on Attention Mechanism, Processes, Vol. 12, No. 11Google Search
28 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780Google Search
29 
K. Cho, B. van Merrienboer, C. Gulcehre, 2014, Learning phrase representations using RNN encoder-decoder for statistical machine translation, pp. 1724-1734Google Search
30 
Y. Kong, J. Kim, Y. Lee, 2017, Short-term electric load forecasting based on long short-term memory recurrent neural network, Energies, Vol. 10, No. 1, pp. 1-20Google Search