KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2026-02
(Vol.75 No.2)
10.5370/KIEE.2026.75.2.258
Journal XML
XML
PDF
INFO
REF
References
1
2024, The 11th Basic Plan for Electricity Supply and Demand (2024-2038)
2
2024, 2024 Energy Supply and Demand Trends
3
H. W. Jung, 2014, Very Short-Term Electric Load Forecasting Using The Kalman Filter Algorithm, Master's thesis
4
K. M. Song, 2024, XGBoost-based Very Short Term Load Forecasting Algorithm, Master's thesis
5
X. Liao, N. Cao, L. Ma, X. Kang, 2019, Research on short-term load forecasting using XGBoost based on similar days, pp. 675-678
6
Y. Han, Y. Liu, J. Jhu, 2018, Short-term power load forecasting based on clustering and XGBoost method, pp. 259-262
7
W. Kong, Z. Y. Dong, B. Huang, F. Luo, Y. Xu, 2019, Short-term residential load forecasting based on LSTM recurrent neural network, IEEE Transactions on Smart Grid, Vol. 10, No. 1, pp. 841-851
8
S. Muzaffar, Z. Chen, S. T. Khang, M. A. Q. Khan, 2019, Short-Term Load Forecasts Using LSTM Networks, Energy Procedia, Vol. 158, pp. 2922-2927
9
T. G. Kim, K. M. Song, S. M. Cho, S. G. Yoon, K. B. Song, 2025, GRU-based Real Time Very Short Term Load Forecasting Algorithm, pp. 111-102
10
J. Zheng, X. Chen, K. Yu, L. Gan, Y. Wang, K. Wang, 2018, Short-term power load forecasting of residential community based on GRU neural network, pp. 154-159
11
K. Ke, H. Sun, C. Zhang, C. Brown, 2019, Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network, Evolutionary Intelligence, Vol. 12, pp. 385-394
12
H. S. Park, 2025, Enhancing Real-Time Power Demand Forecasting Using Hybrid DTW-KMSOM Clustering and LSTM, Master's thesis
13
S. J. Ko, H. Y. Yun, D. M. Shin, 2018, Electronic Demand Data Prediction using Bidirectional Long Short Term Memory Networks, Journal of Software Assessment and Valuation, Vol. 14, No. 1, pp. 33-40
14
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural computation, Vol. 9, No. 8, pp. 1735-1780
15
M. Schuster, K. K. Paliwal, 1997, Bidirectional recurrent neural networks, IEEE transactions on Signal Processing, Vol. 45, No. 11, pp. 2673-2681
16
D. H. Seo, S. Y. Kim, Y. M. Wi, 2025, Enhancing Real-Time Power Demand Forecasting Accuracy through Analysis of Training Strategies for Bi-LSTM Models, pp. 921-922