• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
2024, The 11th Basic Plan for Electricity Supply and Demand (2024-2038)Google Search
2 
2024, 2024 Energy Supply and Demand TrendsGoogle Search
3 
H. W. Jung, 2014, Very Short-Term Electric Load Forecasting Using The Kalman Filter Algorithm, Master's thesisGoogle Search
4 
K. M. Song, 2024, XGBoost-based Very Short Term Load Forecasting Algorithm, Master's thesisGoogle Search
5 
X. Liao, N. Cao, L. Ma, X. Kang, 2019, Research on short-term load forecasting using XGBoost based on similar days, pp. 675-678DOI
6 
Y. Han, Y. Liu, J. Jhu, 2018, Short-term power load forecasting based on clustering and XGBoost method, pp. 259-262DOI
7 
W. Kong, Z. Y. Dong, B. Huang, F. Luo, Y. Xu, 2019, Short-term residential load forecasting based on LSTM recurrent neural network, IEEE Transactions on Smart Grid, Vol. 10, No. 1, pp. 841-851DOI
8 
S. Muzaffar, Z. Chen, S. T. Khang, M. A. Q. Khan, 2019, Short-Term Load Forecasts Using LSTM Networks, Energy Procedia, Vol. 158, pp. 2922-2927DOI
9 
T. G. Kim, K. M. Song, S. M. Cho, S. G. Yoon, K. B. Song, 2025, GRU-based Real Time Very Short Term Load Forecasting Algorithm, pp. 111-102Google Search
10 
J. Zheng, X. Chen, K. Yu, L. Gan, Y. Wang, K. Wang, 2018, Short-term power load forecasting of residential community based on GRU neural network, pp. 154-159DOI
11 
K. Ke, H. Sun, C. Zhang, C. Brown, 2019, Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network, Evolutionary Intelligence, Vol. 12, pp. 385-394DOI
12 
H. S. Park, 2025, Enhancing Real-Time Power Demand Forecasting Using Hybrid DTW-KMSOM Clustering and LSTM, Master's thesisGoogle Search
13 
S. J. Ko, H. Y. Yun, D. M. Shin, 2018, Electronic Demand Data Prediction using Bidirectional Long Short Term Memory Networks, Journal of Software Assessment and Valuation, Vol. 14, No. 1, pp. 33-40Google Search
14 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural computation, Vol. 9, No. 8, pp. 1735-1780DOI
15 
M. Schuster, K. K. Paliwal, 1997, Bidirectional recurrent neural networks, IEEE transactions on Signal Processing, Vol. 45, No. 11, pp. 2673-2681DOI
16 
D. H. Seo, S. Y. Kim, Y. M. Wi, 2025, Enhancing Real-Time Power Demand Forecasting Accuracy through Analysis of Training Strategies for Bi-LSTM Models, pp. 921-922Google Search