Mobile QR Code QR CODE : The Transactions P of the Korean Institute of Electrical Engineers
The Transactions P of the Korean Institute of Electrical Engineers

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleTrans. P of KIEE
  • Indexed by
    Korea Citation Index(KCI)

References

1 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, 2014, Generative adversarial nets, Advances in neural infor- mation processing systems, pp. 2672-2680Google Search
2 
pixiv inc., 2019, Petalica paint., https://petalica-paint.pixiv.dev/index_en.html,[Online; accessed 2020.11.23]Google Search
3 
P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, 2017, Image- to-image translation with conditional adversarial networks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134Google Search
4 
S. Kang, J. Choo, J. Chang, 2017, Consistent comic colori- zation with pixel-wise background classification, NIPS’17 Workshop on Machine Learning for Creativity and DesignGoogle Search
5 
C. Furusawa, K. Hiroshiba, K. Ogaki, Y. Odagiri, 2017, Comicolorization: semi-automatic manga colorization, SIGGRAPH Asia 2017 Technical Briefs, pp. 1-4DOI
6 
P. Hensman, K. Aizawa, 2017, cgan-based manga colorization using a single training image, 2017 14th IAPR Inter- national Conference on Document Analysis and Recognition (ICDAR), IEEE, Vol. 3, pp. 72-77DOI
7 
L. Zhang, Y. Ji, X. Lin, C. Liu, 2017, Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, pp. 506-511DOI
8 
P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, 2017, Scribbler: Controlling deep image synthesis with sketch and color, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400-5409Google Search
9 
Y. Liu, Z. Qin, Z. Luo, H. Wang, 2017, Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks, arXiv preprint arXiv:1705. 01908Google Search
10 
K. Frans, 2017, Outline colorization through tandem adversarial networks, arXiv preprint arXiv:1704.08834Google Search
11 
Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, 2018, User-guided deep anime line art colorization with conditional adversarial networks, Proceedings of the 26th ACM international conference on Multimedia, pp. 1536-1544DOI
12 
L. Zhang, C. Li, T.-T. Wong, Y. Ji, C. Liu, 2018, Two-stage sketch colorization, ACM Transactions on Graphics (TOG), Vol. 37, No. 6, pp. 1-14DOI
13 
Y. Hati, G. Jouet, F. Rousseaux, C. Duhart, 2019, Paintstorch: a user-guided anime line art colorization tool with double generator conditional adversarial network, European Con- ference on Visual Media Production, pp. 1-10DOI
14 
C. Ledig, L. Theis, F. Husz´ar, J. Caballero, A. Cunning- ham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, 2017, Photorealistic single image super-resolution using a generative adversarial network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681-4690Google Search
15 
M. Bi´nkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande, L. C. Cobo, K. Simonyan, 2019, High fidelity speech synthesis with adversarial networks, arXiv preprint arXiv:1909.11646Google Search
16 
M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, 2018, Synthetic data augmentation using gan for improved liver lesion classification, 2018 IEEE 15th inter- national symposium on biomedical imaging (ISBI 2018), IEEE, pp. 289-293DOI
17 
A. Radford, L. Metz, S. Chintala, 2015, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434Google Search
18 
S. Ioffe, C. Szegedy, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167Google Search
19 
B. Dai, S. Fidler, R. Urtasun, D. Lin, Oct 2017, Towards diverse and natural image descriptions via a conditional gan, Proceedings of the IEEE International Conference on Computer Vision (ICCV)Google Search
20 
K. Simonyan, A. Zisserman, 2014, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556Google Search
21 
H. Winnem¨oller, J. E. Kyprianidis, S. C. Olsen, 2012, Xdog: an extended difference-of-gaussians compendium including advanced image stylization, Computers & Graphics, Vol. 36, No. 6, pp. 740-753DOI
22 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-net: Con- volutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, pp. 234-241DOI
23 
A. Odena, V. Dumoulin, C. Olah, 2016, Deconvolution and checkerboard artifacts, Distill, Vol. 1, No. 10, pp. e3DOI
24 
W. Shi, J. Caballero, F. Husz´ar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, Z. Wang, 2016, Real-time single image and video super-resolution using an efficient sub- pixel convolutional neural network, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1874-1883Google Search
25 
S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, July 2017, Aggre- gated residual transformations for deep neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Google Search
26 
S. Nah, T. Hyun Kim, K. Mu Lee, 2017, Deep multi-scale convolutional neural network for dynamic scene deblurring, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883-3891Google Search
27 
Y. Wu, K. He, 2018, Group normalization, Proceedings of the European conference on computer vision (ECCV), pp. 3-19Google Search
28 
J. Deng, W. Dong, R. Socher, L. Li, Kai Li, Li Fei-Fei, June 2009, Imagenet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recogni- tion, pp. 248-255DOI
29 
G. B. Danbooru community, A. Gokaslan., 2019, Danbooru 2017: A large-scale crowdsourced and tagged anime illu- stration dataset.., https://www.gwern.net/Danbooru2017, [Online; accessed 2020.11.23.].Google Search
30 
some, 2018, E-Shuushuu-Kawaii Image Board., https://e-shuushuu.net/, [Online; accessed 19-July-2018]Google Search
31 
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, 2017, Automatic differentiation in pytorchGoogle Search
32 
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980Google Search
33 
J. Bai, F. Lu, K. Zhang, 2019, Onnx: Open neural network exchange., https://github.com/onnx/onnxGoogle Search
34 
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, 2017, Gans trained by a two time-scale update rule converge to a local nash equilibrium, Advances in neural information processing systems, pp. 6626-6637Google Search