Mobile QR Code QR CODE : The Transactions P of the Korean Institute of Electrical Engineers
The Transactions P of the Korean Institute of Electrical Engineers

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleTrans. P of KIEE
  • Indexed by
    Korea Citation Index(KCI)

References

1 
J. Li, M. Oussalah, 2010, Automatic face emotion recognition system, 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, pp. 1-6DOI
2 
M. W. Schurgin, J. Nelson, S. Iida, H. Ohira, J. Y. Chiao, S.L. Franconeri, 2014, Eye movements during emotion recognition in faces, Journal of Vision, Vol. 14, pp. 1-16DOI
3 
A. Halder, A. Konar, R. Mandal, A. Chakraborty, P. Bhowmik, N. R. Pal, A.K. Nagar, 2013, General and interval type-2 fuzzy face-space approach to emotion recognition., IEEE Transactions on Systems, Vol. 43, pp. 587-605DOI
4 
I. A. Adeyanju, E. O. Omidiora, O. F. Oyedokun, 2015, Performance evaluation of different support vector machine kernels for face emotion recognition, SAI Intelligent Systems Conference, pp. 804-806DOI
5 
I. M. Anderson, C. Shippen, G. Juhasz, D. Chase, E. Thomas, D. Downey, Z. G. Toth, K. LIoyd-Williams, R. Elliott, J. F. W. Deakin, 2011, State-dependent alteration in face emotion recognition in depression, The British Journal of Psychiatry, Vol. 198, pp. 302-308DOI
6 
B. Schuller, G. Rigoll, M. Lang, 2003, Hidden markov model-based speech emotion recognition., 2003 IEEE International Conference on Acoustics, pp. 1-4DOI
7 
B. Schuller, G. Rigoll, M. Lang, 2004, Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture, ICASSP, pp. 557-580DOI
8 
K. Han, D. Yu, I. Tashev, 2014, Speech emotion recognition using deep neural network and extreme learning machine, INTERSPEECH, pp. 223-227Google Search
9 
K. Wang, N. An, B. N. Li, Y. Zhang, 2015, Speech emotion recognition using fourier parameters., IEEE Transactions on Affective Computing, Vol. 6, pp. 69-75DOI
10 
M. Jain, S. Narayan, P. Balaji, B. K. P, A. Bhowmick, K. R, 2002, Speech emotion recognition using support vector machine, Electrical Engineering and Systems ScienceGoogle Search
11 
A. Pal, Y. N. Singh, 2018, ECG biometric recognition, ICMC2018 Mathematics and Computing, pp. 61-73Google Search
12 
A. Pal, A. K. Gautam, N. S. Yogendra, 2015, Evaluation of bioelectric signals for human recognition, Procedia Computer Science, pp. 746-752DOI
13 
S. Kun, G. Yang, B. Wu, L. Yang, D. Li, P. Su, Y. Yin, 2019, Human identification using finger vein and ECG signals., Neurocomputing, pp. 111-118DOI
14 
D. Rezqui, Z. Lachiri, 2016, ECG biometric recognition using SVM‐based approach, Transactions on Electrical and Electronic Engineering, pp. 94-100DOI
15 
S. Barra, A. Casanova, M. Frashini, M. Nappi, 2015, EEG/ECG signal fusion aimed at biometric recognition, ICIAP 2015: New Trends in Image Analysis and Processing, pp. 35-42DOI
16 
X. Dong, W. Si, W. Huang, 2018, ECG-based identity recognition via deterministic learning, Biotechnology & Biotechnological Equipment, pp. 769-777DOI
17 
S. Aziz, M. U. Khan, Z. A. Choudhry, A. Aymin, A. Usman, 2019, ECG-based biometric authentication using empirical mode decomposition and support vector machines, 2019 IEEE 10th Annual Information Technology, pp. 906-912DOI
18 
J. R. Pinto, J. S. Cardoso, A. Lourenco, 2018, Evolution, Current Challenges, and future possibilities in ECG biometrics, IEEE ACCESS, pp. 34746-34776DOI
19 
J. R. Pinto, J. S. Cardoso, A. Lourenco, C. Carreiras, 2017, Towards a continuous biometric system based on ECG signals acquired on the steering wheel, Sensors, pp. 1-14DOI
20 
E. Maiorana, P. Campisi, 2017, Longitudinal evaluation of EEG-based biometric recognition, IEEE Transactions on Information Forensics and Security, pp. 1123-1138DOI
21 
E. Maiorana, J. Sole-Casals, P. Campisi, 2016, EEG signal preprocessing for biometric recognition, Machine Vision and Applications, pp. 1351-1360DOI
22 
E. Maiorana, D. L. Rocca, P. Campisi, 2015, Cognitive biometric cryptosystems a case study on EEG, 2015 International Conference on Systems, pp. 125-128DOI
23 
D. Nikolova, P. Mihaylova, A. Manolova, P. Georgieva, 2019, ECG-based human emotion recognition across multiple subjects, FABULOUS 2019, pp. 25-36DOI
24 
H. Ferdinando, T. Seppanen, E. Alasaarela, 2016, Comparing features from ECG pattern and HRV analysis for emotion recognition system, CIBCB 2016, pp. 1-6DOI
25 
A. Goshvarpour, A. Abbasi, A. Goshvarpour, 2017, An accurate emotion recognition system using ECG and GSR signals and matching pursuit method, Biomedical Journal, Vol. 40, pp. 355-368DOI
26 
T. Dissanayake, Y. Rajapaksha, R. Ragel, I. Nawinne, 2019, An ensemble learning approach for electrocardiogram sensor based human emotion recognition, Sensors, Vol. 19, pp. 1-24DOI
27 
P. Sarkar, A. Etemad, 2020, Self-supervised learning for ECG-based emotion recognition, 45th IEEE International Conference on Acoustics Speech and Signal Processing, pp. 1-13DOI
28 
X. Ya, L. Guang-Yuan, 2009, A method of emotion recognition based on ECG signal, 2019 International Conference on Computational Intelligence and Natural Computing, pp. 202-205DOI
29 
Y. L. Hsu, J. S. Wang, W. C. Chiang, C. H. Hung, 2020, Automatic ECG-based emotion recognition in music listening, IEEE Transactions on Affective Computing, Vol. 11, pp. 85-99DOI
30 
F. Agrafioti, D. Hatzinakos, A. K. Anderson, 2012, ECG pattern analysis for emotion detection, IEEE Transactions on Affective Computing, Vol. 3, pp. 102-115DOI
31 
S. Tivatansakul, M. Ohkura, 2016, Emotion recognition using ECG signals with local pattern description methods, International Journal of Affective Engineering, Vol. 15, pp. 51-61DOI
32 
J. S, M. Murugappan, K. Wan, S. Yaacob, 2013, Emotion detection from QRS complex of ECG signals using hurst exponent for different age groups, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 849-854DOI
33 
Y. Fan, X. Lu, D. Li, Y. Liu, 2016, Video-based emotion recognition using CNN-RNN and C3D hybrid networks, ICMI’16, pp. 445-450DOI
34 
H. W. Ng, V. D. Nguyen, V. Vonikakis, S. Winkler, 2015, Deep learning for emotion recognition on small datasets using transfer learning, ICMI’15, pp. 443-449DOI
35 
H. M. Fayek, M. Lech, L. Cavedon, 2017, Evaluating deep learning architectures for speech emotion recognition, Neural Networks, Vol. 92, pp. 60-68DOI
36 
D. Issa, M. F. Demirci, A. Yazici, 2020, Speech emotion recognition with deep convolutional neural networks, Biomedical Signal Processing and Control, Vol. 59, pp. 1-11DOI
37 
S. Jirayucharoensak, S. Pan-Ngum, P. Israsena, 2014, EEG- based emotion recognition using deep learning network with principal component based covariate shift adaptation, The Scientific World Journal, pp. 1-10DOI
38 
P. Pandey, K. R. Seeja, 2019, Subject independent emotion recognition from EEG using VMD and deep learning, Journal of King Saud University-Computer and Information Sciences, Vol. 14, pp. 1-9DOI
39 
J. Wang, R. Li, R. Li, B. Fu, 2020, A knowledge-based deep learning method for ECG signal delineation, Future Generation Computer Systems, Vol. 109, pp. 56-66DOI
40 
G. Giannakakis, E. Trivizakis, M. Tsiknakis, K. Marias, 2019, A novel multi-kernel 1D convolutional neural network for stress recognition from ECG, 2019 8th International Conference on ACIIW, pp. 273-276DOI
41 
R. Subramanian, J. Wache, M. K. Abadi, R. L. Vieriu, S. Winkler, N. Sebe, 2018, ASCERTAIN: Emotion and personality recognition using commercial sensors, IEEE Transactions on Affective Computing, Vol. 9, pp. 147-160DOI
42 
S. Koelstra, C. Muhl, M. Soleymani, J.S. Lee, A. Yazdni, T. Ebrahimi, T. Pun, A. Nijholt, I. DEAP Patras, 2011, A database for emotion analysis using physiological signals, IEEE Transactions on Affective Computing, Vol. 3, pp. 18-31DOI
43 
M. K. Abadi, R. Subramanian, S. M. Kia, P. Avesani, I. Patras, N. Sebe, 2015, DECAF MEG-based multimodal database for decoding affective physiological responses, IEEE Transactions on Affective Computing, Vol. 6, pp. 209-222DOI
44 
S. Katsigiannis, N. Ramzan, 2018, DREAMER: A databases for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices, IEEE Journal of Biomedical and Health Informatics, Vol. 22, pp. 98-107DOI
45 
A. Radford, L. Metz, S. Chintala, 2016, Unsupervised representation learning with deep convolutional generative adversarial networks, ICLR 2016, pp. 1-16Google Search
46 
H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D. N. Metaxas, 2019, StackGAN++: Realistic image synthesis with stacked generative adversarial networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 41, pp. 1947-1962DOI
47 
A. C. H. Rowe, P. C. Abbott, 1995, Daubechies wavelets and mathematica, Computers in Physics, Vol. 635DOI
48 
D. K. Ruch, P. J. Van Fleet, 2009, Wavelet theory: An elementary approach with applications, WileyGoogle Search
49 
V. V. Vermehren, H. M. Oliveira, 2015, Close expression for meyer wavelet and scale functionGoogle Search
50 
A. Bernardino, J. Santos-Victor, 2005, A real-time gabor primal sketch for visual attention, IBPRIA, pp. 335-342DOI
51 
T. Mallick, P. Balaprakash, E. Rask, J. Macfarlane, 2020, Transfer learning with graph neural networks for short-term highway traffic forecasting, arXiv:2004.08038Google Search
52 
T. J. Jun, H. M. Nguyen, D. Kang, D. Kim, Y. H. Kim, 2018, ECG arrhythmia classification using a 2-D convolutional neural network, Computer Vision and Pattern Recognition, pp. 1-22Google Search