Mobile QR Code QR CODE : The Transactions P of the Korean Institute of Electrical Engineers
The Transactions P of the Korean Institute of Electrical Engineers

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleTrans. P of KIEE
  • Indexed by
    Korea Citation Index(KCI)

References

1 
A. Radford, L. Metz, S. Chintala, 2015, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434DOI
2 
pixiv inc., 2021, Petalica paint., https://petalica-paint.pixiv.dev/index_en.html[Online; accessed22 October − 2021]URL
3 
P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, 2017, Image-to-image translation with conditional adversarial networks, in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134URL
4 
S. Kang, J. Choo, J. Chang, 2017, Consistent comic colorization with pixel-wise background classification, in NIPS’17 Workshop on Machine Learning for Creativity and DesignURL
5 
C. Furusawa, K. Hiroshiba, K. Ogaki, Y. Odagiri, 2017, Comicolorization: semi-automatic manga colorization, in SIGGRAPH Asia 2017 Technical Briefs, pp. 1-4DOI
6 
P. Hensman, K. Aizawa, 2017, cgan-based manga colorization using a single training image, in 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Vol. 3, pp. 72-77DOI
7 
L. Zhang, Y. Ji, X. Lin, C. Liu, 2017, Style transfer for anime sketches with enhanced residual u-net and auxiliary classifier gan, in 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, pp. 506-511DOI
8 
P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, 2017, Scribbler: Controlling deep image synthesis with sketch and color, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400-5409URL
9 
Y. Liu, Z. Qin, T. Wan, Z. Luo, 2018, Auto-painter: Cartoon image generation from sketch by using conditional wasserstein generative adversarial networks, Neurocomputing, Vol. 311, pp. 78-87DOI
10 
K. Frans, 2017, Outline colorization through tandem adversarial networks, arXiv preprint arXiv:1704.08834DOI
11 
Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, 2018, User-guided deep anime line art colorization with conditional adversarial networks, in Proceedings of the 26th ACM international conference on Multimedia, pp. 1536-1544DOI
12 
L. Zhang, C. Li, T.-T. Wong, Y. Ji, C. Liu, 2018, Two-stage sketch colorization, ACM Transactions on Graphics (TOG), Vol. 37, No. 6, pp. 1-14Google Search
13 
Y. Hati, G. Jouet, F. Rousseaux, C. Duhart, 2019, Paintstorch: a user-guided anime line art colorization tool with double generator conditional adversarial network, in European Conference on Visual Media Production, pp. 1-10DOI
14 
Y. Lee, S. Lee, 2020, Automatic colorization of anime style illustrations using a two-stage generator, Applied Sciences, Vol. 10, No. 23, pp. 8699DOI
15 
The Linux Foundation, 2019, Onnx: Open neural network exchange., https://github.com/onnx/onnxURL
16 
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.DOI
17 
H. Winnemöller, J. E. Kyprianidis, S. C. Olsen, 2012, Xdog: an extended difference-of-gaussians compendium including advanced image stylization, Computers & Graphics, Vol. 36, No. 6, pp. 740-753DOI
18 
A. Odena, V. Dumoulin, C. Olah, 2016, Deconvolution and checkerboard artifacts, Distill, Vol. 1, No. 10, pp. e3URL
19 
Yeongseop Lee, Seongjin Lee, 2020, Automatic Colorization of High-resolution Animation Style Line-art based on Frequency Separation and Two-Stage Generator, The Transactions of the Korean Institute of Electrical Engineers, Vol. 69p, No. 4, pp. 275~283Google Search
20 
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, 2019, Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems, Vol. 32URL
21 
E-Shuushuu, 2018, E-Shuushuu - Kawaii Image Board., https://e-shuushuu.netURL