Mobile QR Code QR CODE : The Transactions P of the Korean Institute of Electrical Engineers
The Transactions P of the Korean Institute of Electrical Engineers

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleTrans. P of KIEE
  • Indexed by
    Korea Citation Index(KCI)

References

1 
“Statistics on causes of death in 2021,” National Statistical Office, 2022.URL
2 
J. J, Cho, “Stress and cardiovascular disease,” Journal of the Korean Medical Association, vol. 56, no. 6, pp. 462- 470, 2013.URL
3 
C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, D. Rueckert, “Deep learning for cardiac image segmentation: a review,” Frontiers in Cardiovascular Medicine, vol. 7, 2020.DOI
4 
M. S. Cohen, B. W. Eidem, F. Cetta, M. A. Fogel, P. C. Frommelt, J. Ganame, B. K. Han, T. R. Kimball, R. K. Johnson, L. Mertens, S. M. Paridon, A. J. Powell, L. Lopez, “Multimodality Imaging Guidelines of Patients with Transposition of the Great Arteries: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography,” Journal of the American Society of Echocardiography, vol. 29, no. 7, pp. 571-621, 2016.DOI
5 
S. Leclerc et al., “Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography,” in IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2198-2210, 2019.DOI
6 
V. Bui, L. -Y. Hsu, L. -C. Chang and M. Y. Chen, “An automatic random walk based method for 3D segmentation of the heart in cardiac computed tomography images,” 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 1352-1355, 2018.DOI
7 
S. M. Ko, S. H. Hwang, H. J. Lee, “Role of Cardiac Computed Tomography in the Diagnosis of Left Ventricular Myocardial Diseases,” vol. 27, no. 2, pp. 73-92, 2019.DOI
8 
M. Stachera, P. Przybyło, K. Sznajder, M, Gierlotka, “Cardiac magnetic resonance in the assessment of hypertrophic cardiomyopathy phenotypes and stages – pictorial review,” Polish Journal of Radiology, vol. 86, no. 1, pp. 672-684, 2021.DOI
9 
Z. Rguibi, A. Hajami and Z. Dya, “Explaining Deep Neural Networks in medical imaging context,” 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA), Tangier, Morocco, pp. 1-2, 2021.DOI
10 
S. Patel, “An Overview and Application of Deep Convolutional Neural Networks for Medical Image Segmentation,” 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, pp. 722-728, 2023.DOI
11 
M. Mahmud, M. S. Kaiser, A. Hussain and S. Vassanelli, “Applications of Deep Learning and Reinforcement Learning to Biological Data,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2063- 2079, 2018.DOI
12 
O. Bernard, B. Heyde, M. Alessandrini, D. Barbosa, S. Camarasu-Pop, F. Cervenansky, S. Valette, O. Mirea, E. Galli, M. Geleijnse, A. Papachristidis, J. Bosch, J. D'hooge, “Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS),” The MIDAS Journal, 2014.URL
13 
O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, et al. “Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved ?,” in IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2514-2525, 2018DOI
14 
O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234-241, 2015.DOI
15 
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger, “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,” Medical Image Computing and Computer- Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 424—432, 2016.DOI
16 
MR Avendi, A. Kheradvar, H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri,” Medical image analysis, vol. 30, pp. 108-119, 2016.DOI
17 
J. Duan et al., “Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi- Task Deep Learning Approach,” in IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2151-2164, 2019.DOI
18 
T. Liu, Y. Tian, S. Zhao, X. Huang and Q. Wang, “Residual Convolutional Neural Network for Cardiac Image Segmentation and Heart Disease Diagnosis,” in IEEE Access, vol. 8, pp. 82153-82161, 2020.DOI
19 
V. Badrinarayanan, A. Kendall and R. Cipolla, “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.DOI
20 
L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” Proceedings of the European conference on computer vision (ECCV), pp. 801-818, 2018.URL
21 
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510-4520, 2018.URL
22 
C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” Proceedings of the AAAI conference on artificial intelligence, vol. 31, no. 1, 2017.DOI