Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)
Title Numerical Study of Wall-Type Air-Based Building Integrated Photovoltaic-Thermal System on Thermal and Electrical Efficiency
Authors Hobyung Chae ; Sangmu Bae ; Jinhwan Oh ; Yujin Nam
DOI https://doi.org/10.6110/KJACR.2024.36.6.281
Page pp.281-288
ISSN 1229-6422
Keywords 건축물일체형 태양광-열 시스템; 수치해석 시뮬레이션; 압력손실; 시스템 효율 Building integrated photovoltaic-thermal system; Numericla simulation; Pressure loss; System efficiency
Abstract This paper provides foundational research into enhancing a building-integrated photovoltaic/thermal (BIPVT) system, focusing on predicting performance by examining the configuration of heat exchangers and flow rates in an air-based BIPVT system. Numerical analysis software (Ansys Fluent) was employed to calculate heat gain and PV efficiency under defined conditions: insulated sides of the BIPVT, a steady back panel temperature aligned with the building wall temperature (25℃), and maximal solar irradiance (1,000 W/m2) in steady-state scenarios. The findings indicate that PV cell temperature increases with greater internal fin spacing of heat exchangers and decreased flow rate. Conversely, the outlet temperature decreases with an increased flow rate. The efficiency of the PV system varied between 10.5% and 12.2%, with heat gain values ranging from 54.4 to 254.4 W/m². The pressure loss within the system ranged from approximately 3.9 to 27.8 Pa across a flow rate spectrum of 0.2 to 0.9 kg/s, demonstrating a linear increase with the flow rate. Additionally, variations in pressure loss based on fin spacing resulted in a reduction of approximately 67.3% in Case 2 and 48.0% in Case 3 compared to Case 1.