구기범¹
(Ki Beom Ku)
1
정신규²
(Shin Kyu Jeong)
2†
-
국방기술품질원 연구원
(
Researcher, Defense Agency for Technology and Quality, 37, Heogi-ro, Seoul, Korea
)
-
경희대학교 기계공학과 교수
(
Professor, Department of Mechanical Engineering, KyungHee University, 1732, deogyeong-daero,
Yongin-si, Korea
)
Copyright © 2016, Society of Air-Conditioning and Refrigeration Engineers of Korea
Key words
Building energy(건물에너지), Peak electric power(피크전력), Precooling(예냉), Regression model(회귀모델), Genetic algorithm(유전알고리즘)
기호설명
$Y$:
회귀모델의 종속변수
$X_{i}$:
회귀모델의 $i$번째 독립변수
$\beta_{0}$:
회귀모델의 $y$절편 회귀계수
$\beta_{i}$:
회귀모델의 독립변수 $X_{i}$에 대한 회귀계수
$\epsilon$:
회귀모델의 오차항
$TECC_{day}$:
일일 전기에너지 사용료 [원]
$EC_{i}$:
시간당 전기에너지 소비량 [kWh]
$RATE_{i}$:
시간별 부하율 [원/kWh]
$EC_{\max}$:
일일최대전력 소비량 [kWh]
1. 서 론
산업통상자원부의 제9차 전력수급기본계획에 따르면, 2010년~2019년의 산업용 전력 소비량은 전체 전력소비량 중 50% 대의 비중을 차지하고 있으며
점차 전력소비량이 증가하는 경향을 보이고 있다. 또한, 최대전력도 일본, 주요 유럽 국가는 감소추세인 것에 비해 우리나라는 중국, 멕시코 등과 함께
증가하는 추세를 보이고 있다. 앞으로도 우리나라의 전력 수요는 증가할 것으로 보이는 가운데, 최대전력을 감소하기 위한 노력이 필요하다.
이러한 맥락에서 2019년 여름철 최대전력 발생일 기준으로 냉방 수요는 최대전력 소비량의 상당수인 약 30%를 차지하고 있으므로, 냉방 최적운용제어,
ESS(Energy Storage System), DR(Demand Response) 등의 다양한 전략을 통해 냉방 수요를 감소시킨다면 최대전력소비를
줄이는데 큰 기여를 기대할 수 있을 것이다.
한편, 냉난방기의 최적운용방법 중 하나인 예냉(precooling)은 업무시간 이전에 미리 냉난방기를 가동시키는 냉난방기 운용방법이다. 이러한 간헐적
냉방운전을 통해서도 주요 전력소비시간의 냉난방 전력 소비를 줄이거나 피크시프트(Peak-Shift)가 가능하다는 연구결과가 존재한다. 최근에는 PMV(Predicted
Mean Vote)를 고려하면서 전기료를 최소화하도록 예냉을 포함한 HVAC 설정온도 스케줄을 최적화하거나, 전기료를 최소화하기 위하여 예냉시간을
최적화하는 등의 최적 냉방운전과 관련된 연구가 진행되고 있다.
본 논문에서는 유전알고리즘을 이용하여 오피스 건물에 대하여 일일최대전력을 최소화시키기 위해 최적예냉온도를 탐색하는 연구를 수행하였다. 날씨 인자와
예냉 온도 변수로 건물의 일일최대전력을 계산하는 모델을 작성하고, 이를 유전알고리즘에 적용하여 최적 예냉설정온도를 도출하도록 하였다. 테스트 데이터에
적용하여 일일최대전력 소비의 감소를 확인하고, 이로 인한 경제적 효과도 분석하였다.
2. 연구방법
예냉설정온도의 최적화 문제는 최적화 대상 변수에 대한 평가함수를 필요로 한다. 이를 위하여 건물에너지 해석 프로그램으로 모델 데이터를 수집하여 일일최대전력을
예측하는 회귀모델을 작성하고, 테스트데이터를 활용해 모델의 정확도를 검증하였다. 그 후, 유전알고리즘에 작성된 예측모델을 적용해 최적 예냉설정온도를
산출하였다. 산출된 예냉설정온도는 시뮬레이션에 적용, 예냉운전시의 전력소비량을 계산하여 예냉운전과 기존운전의 전력소비와 전기료를 비교함으로써 최적예냉운전의
효과를 확인하는 순으로 연구를 수행하였다(Fig. 1).
2.1 모델 건물 및 날씨 데이터
모델 데이터는 미국 에너지 성(DOE)에서 제공하는 건물에너지 해석 프로그램인 ‘EnergyPlus’를 이용하여 작성하였다. 기준 모델 건물(IDF)은
EnergyPlus에서 제공하는 ‘Medium Office’를 사용하였고 날씨 데이터(EPW)는 우리나라와 날씨환경이 비슷한 볼티모어 지역의 TMY(Typical
Meteorological Year) 2, 3의 2개 날씨데이터를 사용하였다. Medium Office는 3층 건물로 각 층은 1개의 중앙룸과 4개의
외주부로 구성돼있다(Fig. 2). 층별로 VAV(Variable Air Volume) 시스템의 냉난방기가 1개씩 배치돼 덕트를 통해 각 방으로 송풍하는데, 댐퍼로 풍량 조절을
통해 실내온도를 조절한다. 냉방은 시간별 설정온도 스케줄로 운영되며(시뮬레이션 상의 실제 가동은 스케줄에 한 시간 앞선다), 근무시간에는 24℃로
설정하고 그 외 시간은 26.7℃로 설정한다.
본 연구에서 사용한 모델 건물은 기준 모델 건물에서 일부 변수를 조정하여 사용하였다. 모델 건물의 근무시간을 오전 8시부터 오후 5시로 설정하고 예냉시간을
2시간으로 가정하였다. 이를 위해, 예냉시간을 포함해 오전 6시부터 오후 5시까지만 냉방을 실시하도록 관련변수를 수경하였다(Schedule:Compact
오브젝트의 HVACOperationSchd 변수). 두 번째는 냉난방기로부터 각 방으로 가는 최소송풍량 변수(AirTerminal:SingleDuct
:VAV:Reheat 오브젝트의 Constant Minimum Air Flow Fraction 필드)를 수정하였다. 기준 건물 모델은 최소송풍량이
높아 낮은 설정 온도로 시뮬레이션을 수행할 경우 실내온도가 설정온도대로 조절되지 않기 때문이다. 마지막으로 냉방 가동시간에도 불구하고 설정온도 스케줄은
24시간 단위로 입력을 하되, 예냉운전 시간대에도 실내온도를 설정할 수 있도록 설정온도 스케줄 변수(Schedule:Compact 오브젝트의 CLGSETP_SCH
변수)를 수정하였다. 단, Medium Office의 냉방운전은 스케줄에 한 시간 앞서 실시되므로 시뮬레이션 상의 설정온도는 Fig. 3과 같은 스케줄로 설정하도록 하였다. 그 외의 변수는 수정하지 않고 기존 건물 모델의 설정을 그대로 적용하였다.
Fig. 1 Research process for searching optimal precooling set-point temperature.
Fig. 2 Building shape of ‘Medium Office’.
Fig. 3 Daily set-point temperature schedule set in simulation program.
2.2 모델 데이터 수집
모델 데이터는 오전 6, 7시의 예냉설정온도를 적용하여 EnergyPlus로 계산되었다. 설정온도의 범위는 18~28℃로 하였다. 일반적인 사무실
냉난방기의 온도설정 단위는 0.5℃이므로 각 예냉시간 별로 21개 스텝의 온도설정을 조합하여 총 441개의 예냉 설정온도 세트의 건물 일일최대전력
데이터를 작성하였다. 시뮬레이션의 연산 time step은 1시간으로 하여 예냉설정온도 한 세트당 8760개의 연간 시간별 건물 에너지 데이터가 계산되는데,
여기서 여름철(6월1일~8월31일) 평일(65일)의 데이터만 추출하여 모델 데이터를 작성하였다. 하나의 모델 데이터는 일일 최대전력 소비 데이터로서
6, 7시의 예냉설정온도와 6∼18시의 시간별 건구온도 및 습도, 그리고 일일 최대전력 소비량으로 구성하였다. 따라서, 총 57,330개(6시의 21개
예냉온도스텝×7시의 21개 예냉온도스텝 ×65일×2개 날씨데이터)의 모델 데이터가 작성되었다.
2.3 일일최대전력 예측모델 작성
일일최대전력 예측모델은 다중회귀모델을 이용하여 작성하였다. 다중회귀모델은 관심 있는 입출력 변수들의 인과관계를 식(1)과 같은 다항식으로 나타낸 것이다. 다중회귀모델 작성의 주요과정은 회귀모델에 포함된 모수(β)를 추정하는 것으로 즉, 각 입력변수에 대한 회귀계수
추정 값을 얻는 것이다. 모수 추정은 다항식에서 입력변수의 적절한 조합으로 출력변수를 나타낼 때, 오차 항(ε)이 최소가 되도록 최소자승법을 이용하여
그 추정 값($\hat\beta$)을 얻어 모델 식에 적용한다.
일일최대전력 예측모델의 입력변수는 오전 6~7시의 예냉설정온도와 6~18시의 건구온도 및 상대습도를 활용하였으며 출력변수는 일일최대전력 소비량으로
설정하였다. 예냉설정온도 입력변수는 건물에너지 계산의 복잡성을 고려하여 교호작용을 포함해 6차 항까지 반영하였다. 그 이유는 6시의 예냉설정온도를
고정한 상태에서 7시의 예냉설정온도에 따른 일일최대전력 추세선이 6차 다항식으로 설명되기 때문이다(Fig. 4). 또, 예냉설정온도와 건구온도의 상호작용에 따라서 일일최대전력 에너지가 달라질 것이므로 예냉설정온도와 건구온도의 교호작용도 입력변수로 설정하였다.
따라서, 총 100개의 변수가 입력변수로 사용되었다(Table 1).
2.4 일일 최적예냉온도 탐색
최적예냉온도 탐색에 사용된 유전알고리즘은 전역 최적해 탐색 알고리즘으로, 세대(반복 루프 수)와 세대별 개체 수(해 집단)를 지정하면 세대 수 만큼
반복하며 해 집단을 생성하는데 현 세대의 우수한 개체(해)는 다음 세대의 새로운 해 집단을 만드는데 사용된다. 이 때, 우수한 개체에 대한 판별은
평가함수를 통해 이루어진다. 다음 세대의 해 집단은 현 세대의 우수한 개체에 대하여 선택(selection), 교차(crossover), 변이(mutation)이라는
유전알고리즘 특유의 연산자를 사용하여 만들어진다. 최종적으로 반복이 끝나 마지막 세대에 도달하면 그 해 집단에서 가장 우수한 개체를 최적해로 선택한다.
유전알고리즘의 연산자는 생물학적인 진화를 모방하여 만들어졌다. 선택연산자는 교차연산에 쓰이는 두 개의 개체(부모 해)를 고르기 위한 연산자이다. 보통,
그 세대의 우수한 개체를 고른다. 교차연산자는 선택된 두 개체의 적절한 조합으로 새로운 개체를 생성하는 연산자이다. 마지막으로 변이연산자는 이전 세대의
해 집단이 가지고 있지 않은 전혀 새로운 특성의 개체를 생성하기 위해 도입된 연산자이다. 이 세 연산자는 각각 다양한 구현방법이 존재하며 필요에 따라
선택하여 적용할 수 있다.
본 연구의 최적화 변수는 오전 6, 7시의 예냉설정온도로, 변수의 범위는 18℃∼28℃로 제한하였다. 평가함수는 일일최대전력 예측모델을 이용하였으며
일일최대전력이 최소화 되도록 예냉설정온도를 탐색하였다.
Fig. 4 Trend line for peak electric power consumption according to set-point temperature at 7AM (August 1st).
Table 1 Input parameters for peak electric power model
|
Variable Name
|
The number of Variable
|
Single
Parameter
|
Set-point temperature
(Set-point)
|
Set-point(6AM) 1st ~ 6th order
|
6
|
Set-point(7AM) 1st ~ 6th order
|
6
|
Weather parameter
|
Dry bulb Temperature (6AM ~ 6PM)
|
13
|
Relative Humidity (6AM ~ 6PM)
|
13
|
Interaction
Parameter
|
Set-point : Set-point
|
Set-point(6AM) 1st order : Set-point(7AM) 1st ~ 6th order
|
6
|
Set-point(6AM) 2nd order : Set-point(7AM) 1st ~ 6th order
|
6
|
Set-point(6AM) 3rd order : Set-point(7AM) 1st ~ 6th order
|
6
|
Set-point(6AM) 4th order : Set-point(7AM) 1st ~ 6th order
|
6
|
Set-point(6AM) 5th order : Set-point(7AM) 1st ~ 6th order
|
6
|
Set-point(6AM) 6th order : Set-point(7AM) 1st ~ 6th order
|
6
|
Weather : Set-point
|
Dry bulb temperature : Set-point(6AM) 1st order
|
13
|
Dry bulb temperature : Set-point(7AM) 1st order
|
13
|
3. 일일최대전력 예측모델 작성결과 및 최적예냉온도 탐색결과
3.1 예측모델 작성결과 및 정확도 평가
회귀모델을 이용하여 일일최대전력 예측모델을 작성하고 모델의 적합성을 확인한 결과, 수정결정계수 (adjusted R-square)값이 0.9373으로
나타났다. 한편, 모델의 정확도 평가는 테스트데이터를 통해 실시하였다. 테스트데이터는 같은 모델 건물에 볼티모어지역 대신 서울지역의 1개 TMY 날씨데이터를
사용하여 작성하였다. 그 외 조건은 모두 모델 데이터와 같은 내용으로, 28,665개의 테스트데이터를 작성하여 모델의 정확도를 평가하였다. 그 결과,
테스트데이터 전체에 대한 예측오차는 5.64%를 보였으며 각 데이터별(일별)로는 0.00~30.34%의 예측오차를 보여주었다. Fig. 5는 441개의 예냉설정온도 조합세트 중 임의의 한 세트를 선택하여 여름기간 평일 65일의 일일최대전력 소비량을 예측한 것으로, 예측 값이 실제 값의
경향을 따르고 있음을 보여주고 있다.
3.2 일일 최적예냉온도 탐색결과
테스트 데이터를 작성하는데 활용된 서울 날씨데이터의 여름철 평일 65일의 시간별 건구온도와 상대습도를 평가함수(일일 최대전력 예측모델)에 입력인자로
활용하여, 유전 알고리즘을 이용하여 일일최대전력을 최소화하는 최적 예냉설정온도를 산출하였다. 그리고 각각의 도출된 예냉설정온도를 EnergyPlus
건물 모델(IDF)의 냉방온도 스케줄에 입력하여 계산한 전력소비량을 같은 65일에 대하여 기존 냉방운전을 실시했을 때의 전력소비량과 비교하였다. 그
결과, 여름 평일의 일일최대전력 소비량이 0.71~5.64% 감소하였다(Fig. 6). 실내의 열을 미리 제거하기 위하여 추가냉방을 실시하였기 때문에 일일 근무시간(8~17시)의 전력소비량도 감소(0.74~4.63%)한 것을 볼
수 있으나(Fig. 7), 일일 총 전력소비량은 오히려 0.04~2.56% 증가하는 결과가 나타났다(Fig. 8).
Fig. 5 Peak electric power prediction of building.
Fig. 6 Peak electric power consumption comparison.
Fig. 7 Worktime electric power consumption comparison.
Fig. 8 Daily electric power consumption comparison.
최적 예냉설정온도 탐색결과는 6시에 약 21.6∼22.9℃, 7시에는 약 23.5∼27.7℃로 나타났다. 이를 시뮬레이션에 적용시 실내온도가 대체로
설정온도의 약 0.3℃ 이내에서 조절됐으나, 7시에 27℃대로 설정온도가 도출된 케이스는 7시의 실내온도가 적게는 약 1.0℃에서 크게는 약 2.2℃까지
설정온도보다 낮은 온도로 조절됐다(Fig. 9, Fig. 10).
결과를 자세히 관찰하기 위하여 Fig. 11, 12에 임의 하루의 설정온도 스케줄과 전력 소비량을 도식하고, 건물 전체의 평균 실내온도(Fig. 13)를 확인하였다. 이 날은 6시, 7시의 최적 예냉설정온도가 22.3092℃및 27.4750℃로 도출되었다. 6시에는 냉방을 가동하기 시작하여 전력소비가
기준 건물에 비해 늘었지만, 7시부터 근무시간 내내 기준 건물보다 최적예냉운전을 실시하였을 때의 시간별 전력소비량이 더 적게 소비된 것을 볼 수 있다.
건물 내 평균 실내온도는 예냉운전시 6시에는 설정온도와 비슷하게 조절되었지만(22.4306℃), 7시에는 설정온도보다 약 1.5℃낮게 조절되었다(25.9395℃).
근무시간에는 설정온도 스케줄대로 운전하면서 실내온도를 24℃로 유지하였다. 따라서, 근무시간의 온도를 24℃로 유지하면서도 전체적인 일일 전력소비량은
늘었으나 일일 최대전력 소비량과 근무시간의 총 전력 소비량은 기존보다 더 적은 것을 확인할 수 있다.
Fig. 9 Building indoor average temperature at 7AM.
Fig. 10 Building indoor average temperature at 8AM.
Fig. 11 Optimal set-point temperature schedule for precooling (July 10th).
Fig. 12 Electric power consumption with optimum precooling (July 10th).
Fig. 13 Building average indoor temperature (July 10th).
3.3 최적예냉운전의 경제성 평가
전력 소비량 비교에 이어 이번 절에서는 기존 냉방운전과 최적예냉운전의 일일전기료를 비교하였다. 전기료는 Medium Office가 사무실임을 고려하여
한국전력공사에서 제공하는 임의의 일반용 전기요금표를 적용하여 일일전기료 계산식을 식(2)와 같이 작성하였다. 식(2)의 전기료는 기본요금과 사용요금으로 나뉘는데, 기본요금은 일일 시간별 전력 소비량 중 최대치에 대하여 단위기본요금인 9,810 [원/kW]을 곱하여
계산하였다. 사용요금은 각 시간별 전기 소비량에 대하여 시간당 요금을 곱하여 일일합산으로 계산한다. 여기서 $RATE_{i}$는 시간별 부하율로 전력
소비가 집중되는 시간에는 단위 kWh당 가격이 높고 새벽 시간 등의 소비 집중도가 낮은 시간대에는 단위 kWh당 가격이 낮게 구성되어있다. 시간별
부하율은 Table 2와 같이 구성되어 전기료 계산에 적용하였다.
Medium Office의 최적예냉운전 실시결과로 기존 냉방운전과 비교하여 일일전기료의 0.47∼4.85%인 8,901원∼102,169원이 절감되었음을
확인하였다(Fig. 14). 여름기간인 65일 동안의 총 전기료는 기존 냉방운전의 경우 139,281,271원, 최적예냉운전의 경우 136,072,516원으로 그 차액이
3,208,755원인 것으로 나타났다.
전체소비량이 늘어났음에도 불구하고 전기료가 감소한 이유는 일일최대전력 감소로 인한 기본요금 절감 효과가 소비량 증가로 인한 사용요금 증가보다 크거나,
저부하 시간대(예냉시간)의 전력소비량 상승으로 인한 사용요금의 증가보다 중․고부하 시간대(근무시간)의 전력소비량 감소로 인한 사용요금 절감이 더 크기
때문이다.
내용을 자세히 설명하기 위해 Fig. 15 및 Table 3을 도시하여 시간별 사용요금을 비교하였다. 앞서 Fig. 12로부터 최적예냉운전시 기존 냉방운전보다 일일최대전력이 작아지는 것을 보았는데, 이를 토대로 기본요금을 계산하면 기존 냉방운전을 실시한 경우 1,791,845원,
최적예냉운전의 경우 1,722,675원으로 69,170원의 요금이 절감되었다. 사용요금은 기존 냉방운전 시 276,134원, 최적예냉운전 시 275,538원으로
계산되어 최적예냉운전이 596원 절감되었다. 따라서, 일일전기료가 총 2,067,979원과 1,998,213원으로 최적예냉운전을 실시했을 때 기존
냉방 운전보다 69,766원 절감된 결과가 나타났다. 앞서 설명한 바와 같이 예냉운전을 통해 저부하시간대인 6, 7시의 전기 사용요금이 늘었지만 중,
고부하시간대인 근무시간의 전기 사용요금이 더 크게 줄어들었으므로 사용요금도 절감돼 전기료가 감소한 것이다. Fig. 12의 6시의 전력소비량에서 큰 차이가 있음에도 불구하고 Fig. 15의 6시 전기 사용료 차이가 크지 않은 것을 통해서도 확인할 수 있다.
Table 2 Hourly rates for electricity bill in summer [Won/kWh]
Time
|
Load
|
Rate
|
Time
|
Load
|
Rate
|
0
|
L
|
50.2
|
12
|
M
|
103.4
|
1
|
L
|
50.2
|
13
|
H
|
173.7
|
2
|
L
|
50.2
|
14
|
H
|
173.7
|
3
|
L
|
50.2
|
15
|
H
|
173.7
|
4
|
L
|
50.2
|
16
|
H
|
173.7
|
5
|
L
|
50.2
|
17
|
M
|
103.4
|
6
|
L
|
50.2
|
18
|
M
|
103.4
|
7
|
L
|
50.2
|
19
|
M
|
103.4
|
8
|
L
|
50.2
|
20
|
M
|
103.4
|
9
|
M
|
103.4
|
21
|
M
|
103.4
|
10
|
H
|
173.7
|
22
|
M
|
103.4
|
11
|
H
|
173.7
|
23
|
L
|
50.2
|
Fig. 14 Daily electricity bill comparison.
Fig. 15 Hourly electricity usage bill comparison (July 10th).
Table 3 Comparison of usage electric bills (July 10th)
Base cooling
|
Optimized precooling
|
Time
|
Load[kWh]
|
Usage bill[Won]
|
Time
|
Load[kWh]
|
Usage bill[Won]
|
0
|
38.94
|
1,955
|
0
|
38.94
|
1,955
|
1
|
38.94
|
1,955
|
1
|
38.94
|
1,955
|
2
|
38.94
|
1,955
|
2
|
38.94
|
1,955
|
3
|
38.94
|
1,955
|
3
|
38.94
|
1,955
|
4
|
41.62
|
2,089
|
4
|
41.62
|
2,089
|
5
|
31.75
|
1,594
|
5
|
31.75
|
1,594
|
6
|
65.50
|
3,288
|
6
|
138.61
|
6,958
|
7
|
147.21
|
7,390
|
7
|
130.73
|
6,562
|
8
|
182.65
|
9,169
|
8
|
175.60
|
8,815
|
9
|
169.57
|
17,533
|
9
|
165.45
|
17,108
|
10
|
172.44
|
29,952
|
10
|
168.95
|
29,346
|
11
|
169.87
|
29,507
|
11
|
167.11
|
29,027
|
12
|
175.36
|
18,132
|
12
|
172.62
|
17,849
|
13
|
170.96
|
29,695
|
13
|
168.61
|
29,288
|
14
|
169.73
|
29,482
|
14
|
167.70
|
29,130
|
15
|
171.24
|
29,744
|
15
|
169.46
|
29,436
|
16
|
155.08
|
26,938
|
16
|
153.80
|
26,715
|
17
|
62.83
|
6,497
|
17
|
62.83
|
6,497
|
18
|
60.26
|
6,231
|
18
|
60.26
|
6,231
|
19
|
46.65
|
4,823
|
19
|
46.65
|
4,823
|
20
|
57.70
|
5,966
|
20
|
57.70
|
5,966
|
21
|
41.62
|
4,303
|
21
|
41.62
|
4,303
|
22
|
38.94
|
4,026
|
22
|
38.94
|
4,026
|
23
|
38.94
|
1,955
|
23
|
38.94
|
1,955
|
4. 결 론
본 연구에서는 일일최대전력 소비량을 최소화하기 위하여 최적 예냉설정온도를 탐색하고 이를 바탕으로 하는 예냉운전을 실시하였다. 먼저, 예냉설정온도와
날씨인자를 이용하여 일일최대전력 예측모델을 작성하였는데 가능한 획득하기 쉬운 입력변수를 활용한 모델식을 작성하고자 날씨인자는 건구온도와 상대습도만
사용하였다. 작성된 예측모델은 평가함수로서 유전알고리즘에 적용, 일일최대전력이 최소화되는 예냉설정온도를 탐색하도록 하였다. 테스트 데이터를 대상으로
최적 예냉설정온도를 도출하고 예냉운전을 실시한 결과, 전반적으로 일일전력 소비량은 증가한 대신 일일최대전력 소비량이 감소한 결과를 나타내었다. 또한,
근무시간(8~17시) 동안의 전력소비량이 감소하는 부수적인 효과도 확인할 수 있었다.
최적예냉운전이 미치는 경제적인 효과를 확인하기 위하여 최적예냉운전시의 전기료와 기존 냉방운전시의 전기료를 비교하였다. 전기료는 시간에 따른 부하율을
고려하여 기본요금과 사용요금의 합으로 계산하였다. 확인결과, 최적예냉운전을 실시한 모든 날에 대해서 기존냉방운전과 비교하여 전기료가 절감되었음을 확인하였다.
예냉운전으로 인한 일일최대전력의 감소는 기본요금의 감소로 이어졌으며 사용요금은 경우에 따라 기존 냉방운전시 보다 증가하거나 감소하는 날이 있었다.
그러나, 최적예냉운전으로 전력소비량 증가에 따른 사용요금 증가보다 최대전력의 감소로 인한 기본요금의 감소가 더 컸기 때문에 전체적으로 일일 전기료는
감소됐다. 따라서, 최적예냉운전은 일일전기료를 감소시켜 경제적인 효과가 있음을 확인하였다.
최적예냉운전 전략은 다른 건물에너지 운용 전략과 연동할 수 있다. 예를 들어, 최대전력시간의 기기사용을 줄임으로써 전력소비를 일정비율 감소시키는 전략을
예냉운전과 함께 적용하면, 최대전력감소에 시너지를 발휘할 수 있을 것이다. 본 논문에서는 간단하게 적용하는 것을 목표로 기본적인 모델기법과 획득하기
쉬운 변수를 이용하여 연구를 진행하였다. 더욱 고도화된 모델링 기법과 다양한 변수를 고려한다면 더 정교한 운용방법으로써 다른 운용 전략과 함께 건물
최대전력 소비량의 감소에 이바지할 수 있을 것으로 기대된다.