KJACR
Korean Journal of
Air-Conditioning and Refrigeration Engineering
SAREK
Contact
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
http://journal.auric.kr/kjacr
Mobile QR Code
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Korean J. Air-Cond. Refrig. Eng.
Open Access, Monthly
Open Access
Monthly
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
Online Submission
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
윤리규정
Research &
Publication Ethics
논문투고안내
Instructions to Authors
BM
(Business Model)
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
Archive
2020-01
(Vol.32 No.1)
10.6110/KJACR.2020.32.1.037
Journal XML
XML
PDF
INFO
REF
References
1
Pérez-lombard L., Ortiz J., Pout C., 2008, A review on buildings energy consumption information, Energy and Buildings, Vol. 40, pp. 394-398
2
Huang W., Zaheeruddin M., Cho S. H., 2006, Dynamic simulation of energy management control functions for HVAC systems in buildings, Energy Conversion and Management, Vol. 47, pp. 926-943
3
Cheon S. H., Kwak Y. H., Jang C. Y., Huh J. H., 2012, Comparison with Energy Saving Potential of Similar AHU Control Strategie, Proceeding of the AIK, Vol. 32, No. 2, pp. 281-282
4
Suh W. J. Park C. S., 2012, Issues and Limitations on the Use of a Whole Building Simulation Tool for Energy Diagnosis of a Real-life Building, Journal of AIK, Vol. 28. no. 1, pp. 273-283
5
Lee S. M., Hong J. P., Cho G. Y., Yeo M. S., Kim K. W., 2009, The Analysis of Free Cooling Status through HVAC Operational Data Survey, Proceeding of the KIASEBS, pp. 279-282
6
Zhao H. Magoules F., 2012, A review on the prediction of building energy consumption, Renewable and Sustainable Energy Reviews, Vol. 16, pp. 3586-3592
7
Park D. H., Nam H. M., Chung H. G., Yang I. H., 2014, Analysis of Energy Saving Effect of Optimal Start/Stop with ANN on Heating and Cooling system, Proceeding of Korean Journal of Air-Conditioning and Refrigerating Engineering, pp. 486-487
8
Yanga I. H. Kim K. W., 2004, Prediction of the time of room air temperature descending for heating systems in buildings, Building and Environment, Vol. 39, pp. 19-29
9
Dong B., Cao C., Lee S. E., 2005, Applying support vector machines to predict building energy consumption in tropical region, Energy and Buildings, Vol. 37, pp. 545-553
10
Feurer M., 2019, Auto-sklearn : Efficient and Robust Automated Machine Learning, Automated Machine Learning, pp. 113-134
11
Bourdeau M., 2019, Modeling and forecasting building energy consumption : A review of data-driven techniques, Sustainable Cities and Society, Vol. 48, pp. 101533
12
Feurer M., 2015, Efficient and robust automated machine learning, Advances in Neural Information Processing Systems 28 (NIPS 2015), pp. 2962-2970
13
Pedregosa F., 2011, Scikit-learn : Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830
14
Vapnik V., 2000, The nature of statistical learning theory, Springer, Vol. 2
15
Hong G. P. Kim B. S., 2018, Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy, Energies, Vol. 11, No. 2, pp. 1-16
16
Snoek J., Larochelle H., Adams R. P., 2012, Practical Bayesian optimization of machine learning algorithms, Advances in Neural Information Processing Systems, Vol. 25, pp. 2960-2968
17
Gil S.H., 2016, A Study on the Method of Energy Demand Prediction Using Deep Learning, Proceeding of Symposium of the KICIS, pp. 1014-1015
18
ASHRAE GUIDELINE 14-2002 Measurement of Energy and Demand Savings.
19
Kim S. K., 2008, Design case of the cancer hospital, Magazine of the SAREC, Vol. 37, No. 8, pp. 4-15
20
Rosenblatt F., 1958, The Perceptron: A probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, Vol. 65, No. 6, pp. 386-408