KJACR
Korean Journal of
Air-Conditioning and Refrigeration Engineering
SAREK
Contact
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
http://journal.auric.kr/kjacr
Mobile QR Code
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Korean J. Air-Cond. Refrig. Eng.
Open Access, Monthly
Open Access
Monthly
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
Online Submission
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
윤리규정
Research &
Publication Ethics
논문투고안내
Instructions to Authors
BM
(Business Model)
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
Archive
2023-07
(Vol.35 No.07)
10.6110/KJACR.2023.35.7.331
Journal XML
XML
PDF
INFO
REF
References
1
National Fire Agency, 2022, National Fire Agency Statistical Year Book, Available: https://kosis.kr/statHtml/statHtml.do?orgId=156&tblId=TX_15601_A004&conn_path=I3.
2
Ministry of Land, Infrastructure and Transport., 2022, Statistics on Buildings, Available: https://stat.molit.go.kr/portal/main/portalMain.d
3
Lee, H. K., Choi, J. H., and Cho, H. S., 2020, Research for Automatic Generation of 2D Design Drawings of Firefighting Equipment using AI, Proceedings of the Korea Institute of Fire Science and Engineering Conference, Vol. 1, pp. 197-206.
4
National Fire Agency, 2022, Korean Firefighting Facility Design Procedure, Available: https://www.nfa.go.kr.
5
McCarthy, J., 1987, Generality in Artificial Intelligence, Communications of the ACM, Vol. 30, No. 12, pp. 1030-1035.
6
Ko, K. S., Yang, J. K., Hwang, D. H., Ko, H. S., Ga. C. O., and Jo, J. P., 2020, Building Fire Prediction Model Study using AI, The Journal of Korean Institute of Communications and Information Sciences, Vol. 45, No. 7, pp. 1210-1218.
7
Park. J. C. and Kang. D, S., 2021, Real-Time Video Fire Detection based on YOLO in Antifire Surveillance Systems, Proceedings of KIIT Conference, pp. 179-181.
8
Kim, Y. J. and Kim, E, G., 2016, Image based Fire Detection using Convolutional Neural Network, Journal of the Korea Institute of Information and Communication Engineering, Vol. 20, No. 9, pp. 1649-1656.
9
Roh. J. H., Min. S. H., and Kong. M. S., 2022, Analysis of Fire Prediction Performance of Image Classification Models based on Convolution Neural Network, Fire Science and Engineering, Vol. 36, No. 6 pp. 70-77.
10
Kim, T. H., H, S. M., and Yeon, S. C., 2022, Development of Optimal Rescue Pathfinding Algorithm using Deep-Learning Architectural Plan Recognition, Journal of the Architectural Institute of Korea, Vol. 42, No. 1, pp. 562-563.
11
Zhao, Y.F., Deng, X., and Lai, H., 2020, A Deep Learning-Based Method to Detect Components from Scanned Structural Drawings for Reconstructing 3D Models, Applied Sciences, Vol. 10, No. 6, p. 2066.
12
Schönfelder, P. and König, M., 2022, Deep Learning-based Text Detection on Architectural Floor Plan Images, In IOP Conference Series: Earth and Environmental Science, Vol. 1101, No. 8, p. 082017.
13
Python, 2022, Python Documentation, Available: https://www.python.org/.
14
Anaconda, 2022, Anaconda Documentation, Available: https://www.anaconda.com/use-cases.
15
Paliwal, S., Vishwanath, D., Rahul, R., Sharma, M., and Vig, L., 2019, TableNet: Deep Learning Model for End-to-End Table Detection and Tabular Data Extraction from Scanned Document Images, In 2019 International Conference on Document Analysis and Recognition, pp. 128-133.
16
OpenCV., 2022, OpenCV Documentation, Available: https://docs.opencv.org/4.x/.
17
EasyOCR., 2022, EasyOCR API Documentation, Available: https://www.jaided.ai/easyocr/documentation/.
18
Baek, Y. M., Lee, B. D., Han. D. Y., Yun, S. D., and Lee, H. S., 2019, Character Region Awareness for Text Detection, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9365-9374.
19
Haldar, R. and Mukhopadhyay, D., 2011, Levenshtein Distance Technique in Dictionary Lookup Methods: An improved Approach, Available: arXiv preprint arXiv:1101.1232.
20
Visa, S., Ramsay, B., Ralescu, A. L., and Van Der Knaap, E., 2011, Confusion Matrix-Based Feature Selection. Proceedings of the Twenty second Midwest Artificial Intelligence and Cognitive Science Conference, Vol. 710, No. 1, pp. 120-127.
21
Pytorch., 2022, Pytorch Documentation, Available: https://pytorch.org/docs/stable/generated/torch.nn.CTCLoss.html.