Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
Kent, W. P., Roger, H., Constantinos, A. B., Clay, N., Drury, B. C., Elizabeth, K. T., and Paul, T., 2022, ASHRAE Position Document on Building Decarbonization, ASHRAE.URL
2 
Drgoňa, J., Arroyo, J., Figueroa, I. C., Blum, D., Arendt, K., Kim, D., Ollé, E. P., Oravec, J., Wetter, M., Vrabie, D., and Helsen, L., 2020, All You Need to Know about Model Predictive Control for Buildings, Annual Reviews in Control, Vol. 50, pp. 190-232.DOI
3 
Oh, K., Kim, E.-J., and Park, C.-Y., 2022, A Physical Model-Based Data-Driven Approach to Overcome Data Scarcity and Predict Building Energy Consumption, Sustainability, Vol. 14, No. 15, p. 9464.DOI
4 
Afroz, Z., Shafiullah, G., Urmee, T., and Higgins, G., 2017, Modeling Techniques Used in Building HVAC Control Systems: A Review, Renewable & Sustainable Energy Reviews, Vol. 83, pp. 64-84.DOI
5 
Kim, D., Lee, J., Lok, S., DO, Mago, P. J., Lee, K., and Cho, H., 2022, Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends, Energies, Vol. 15, No. 19, p. 7231.DOI
6 
Amara, F., Agbossou, K., Cardenas, A., Dube, Y., and Kelouwani, S., 2015, Comparison and Simulation of Building Thermal Models for Effective Energy Management, Smart Grid and Renewable Energy, Vol. 06, No. 04, pp. 95-112.DOI
7 
Bünning, F., 2021, Marrying Machine Learning and Model Predictive Control for efficient Building Energy Management (Ph.D. dissertation), ETH Zurich, Zürich, Switzerland.URL
8 
Ma, J., Haghighat, F., and Fung, B. C. M., 2020, A Review of the-state-of-the-art in Data-driven Approaches for Building Energy Prediction, Energy and Buildings, Vol. 221, p. 110022.DOI
9 
Yao, Y. and Shekhar, D. K., 2021, State of the Art Review on Model Predictive Control (MPC) in Heating Ventilation and Air-conditioning (HVAC) field, Building and Environment, Vol. 200, p. 107952.DOI
10 
e-Media Resources (n.d.). Welcome | TRNSYS : Transient System Simulation Tool. https://www.trnsys.com/.URL
11 
Jeon, B. K., Park, C. Y., Jang, H. I., Choi, S. W., Kang, M. G., and Kim, E. J., 2018, Comparison of ECO2 Results using Calibrated Input Data Pertaining to Room Operating Conditions, Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, Vol. 12, No. 3, pp. 223-234.DOI
12 
Nise, N. S., 2010, Control Systems Engineering, Wiley.URL
13 
Verhaegen, M., 1992b, Subspace Model Identification Part 2. Analysis of the Elementary Output-error State-space Model Identification Algorithm, International Journal of Control, Vol. 56, No. 5, pp. 1211-1241.DOI
14 
Park, S. W., Jang, Y. H., and Johannes, K., 2017b, Simple Modeling of Floor Heating Systems based on Optimal Parameter Settings, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 29, No. 9, pp. 472-481.DOI
15 
DIN V 18599-10:2016-10, Energy efficiency of buildings - Calculation of the Net, Final and Primary Energy Demand for Heating, Cooling, Ventilation, Domestic Hot Water and Lighting - Part 10: Boundary Conditions of use, Climatic Data, Beuth, Berlin, 2016.URL