Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
ISO 7730, 2005, Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.URL
2 
Stauffer, Y., Olivero, E., Onillon, E., Mahmed, C., and Lindelöf, D., 2017, NeuroCool: Field Tests of an adaptive, Model-predictive Controller for HVAC Systems, Energy Procedia, Vol. 122, pp. 127-132.DOI
3 
Auffenberg, F., Stein, S., and Rogers, A., 2015, A Personalized Thermal Comfort Model Using a Bayesian Network, pp. 2547-2553.DOI
4 
Liu, W., Lian, Z., and Zhao, B., 2007, A Neural Network Evaluation Model for Individual Thermal Comfort, Energy Build. Vol. 39, No. 10, pp. 1115-1122.DOI
5 
Daum, D., Haldi, F., and Morel, N., 2011, A Personalized Measure of Thermal Comfort for Building Controls, Build. Environ. Vol. 46, No. 1, pp. 3-11.DOI
6 
Aguilera, J. J., Kazanci, O. B., and Toftum, J., 2019, Thermal Adaptation in Occupant-driven HVAC Control, Journal of Building Engineering, Vol. 25, 100846.DOI
7 
Ji, Y. and Kwon, D., 2023, A Study on the Method for Calculating the Optimum Set Temperature to Maintain the Thermal Comfort, Proceeding of Winter Conference on The Korean Institute of Communications and Information Sciences, pp. 38-39.URL
8 
Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., and Kajimoto, K., 2020, Web of Things (WoT) Architecture, W3C Recommendation 9 April 2020.URL
9 
Kaebisch, S., Kamiya, T., McCool, M.., Charpenay, V.., and Kovatsch, M., 2020, Web of Things (WoT) Thing Description, W3C Recommendation 9 April 2020.URL
10 
Ma, T. Y. and Faye, S. 2021, Multi Step Electric Vehicle Charging Station Occupancy Prediction Using Mixed LSTM Neural Networks, arXivpreprintarXiv:2106.04986.URL
11 
Blad, C., Bøgh, S., and Kallesøe, C. S., 2022, Data-driven Offline Reinforcement Learning for HVAC-systems, Energy, Vol. 261, 125290.DOI
12 
Duun-Henriksen, A. K., Schmidt, S., Røge, R. M., Møller, J. B., Nørgaard, K., Jørgensen, J. B., and Madsen, H., 2013, Model Identification Using Stochastic Differential Equation Grey-box Models in Diabetes, Journal of Diabetes Science and Technology, Vol. 7, No. 2, pp. 431-440.DOI