Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
Wiese, F., Vajen, K., Krause, M., and Knoch, A., 2007, Automatic Fault Detection for Big Solar Heating Systems, Proceedings of ISES World Congress, Beijing, China.DOI
2 
Dröscher, A., Ohnewein, P., Haller, M. Y., and Heimrath, R., 2009, Modular Specification of Large-scale Solar Thermal Systems for the Implementation of an Intelligent Monitoring System, Proceedings of ISES Solar World Congress, Johannesburg, South Africa.URL
3 
Holter, C., Gerardts, B., Ohnewein, P., Dröscher, A., Feichtner, F., Schgaguler, K., Meißner, E., Luidolt, P., Kötinger, A., Heimrath, R., and Streicher, W., 2012, Development of the Prototype IP-solar: A Web-based Monitoring and diagnostics tool for solar thermal systems, Energy Procedia, Vol. 30.DOI
4 
Pärisch, P. and Vanoli, K., 2007, Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems, Proceedings of ESTEC 2007, Freiburg, Germany.URL
5 
de Keizer, C., Kuethe, S., Jordan, U., and Vajen, K., 2012, Simulation-based Long-term Fault Detection for Solar Thermal Systems, Sol. Energy, Vol. 93 pp. 109-120.DOI
6 
Schmelzer, C., Georgii, M., Sauer, C., Orozaliev, J., and Vajen, K., 2022, Fault Detection for Solar Thermal Systems: Evaluation and Improvement of Existing Algorithms, Proceedings of the EuroSun 2022, Kassel, Germany.URL
7 
Kalogirou, S., Lalot, S., Florides, G., and Desmet, B., 2008, Development of a Neural Network-based Fault Diagnostic System for Solar Thermal Applications, Solar Energy, Vol. 82, pp. 164-172.DOI
8 
He, H., Menicucci, D., Caudell, T., and Mammoli, A., 2011, Real-time Fault Detection for Solar Hot Water Systems Using Adaptive Resonance Theory Neural Networks, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA.DOI
9 
Kalogirou, S. A., Mathioulakis, E., and Belessiotis, V., 2014, Artificial Neural Networks for the Performance Prediction of Large Solar Systems, Renewable Energy, Vol. 63, pp. 90-97.DOI
10 
Feierl, L., Unterberger, V., Rossi, C., Gerardts, B., and Gaetani, M., 2023, Fault Detective: Automatic Fault-detection for Solar Thermal Systems Based on Artificial Intelligence, Solar Energy Advances, Vol. 3.DOI
11 
Kim, I. K., Lim, H. W., Lee, W. J., Lee, K. H., and Shin, U. C., 2023, Simulation-Based Real-time Performance Analysis of Flat Plate Solar Collector, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 35, pp. 343-353.DOI
12 
International Standard Organization, 2022, ISO 24194:2022 (Solar energy-Collector fields-Check of performance)URL
13 
Erbs, D. G., Klein, S. A., and Duffie, J. A., 1982, Estimation of the Diffuse Radiation Fraction for Hourly, Daily, and Monthly-Average Global Radiation, Solar Energy, Vol. 28, pp. 293-302.DOI
14 
Reindl, D. T., Beckman, W. A., and Duffie, J. A., 1990, Evaluation of Hourly Tilted Surface Radiation Models, Solar Energy, Vol. 45, pp. 9-17.DOI
15 
Duffie, J. A. and Beckman, W. A., 2013, Solar Engineering of Thermal Process, John Wiley & Sons.URL
16 
Brandemuehl, M. J. and Beckman, W. A., 1980, Transmission of Diffuse Radiation Through CPC and Flat-plate Collector Glazings, Solar Energy, Vol. 24, pp. 511-513.DOI
17 
Marvuglia, A. and Messineo, A., 2012, Monitoring of Wind Farms’ Power Curves Using Machine Learning Techniques, Applied Energy, Vol. 98, pp. 574-583.DOI
18 
Taslimi-Renani, E., Modiri-Delshad, M., Elias, M. F. M., and Rahim, N. A., 2016, Development of an Enhanced Parametric model for wind turbine power curve, Applied Energy, Vol. 177, pp. 544-552.DOI
19 
Yampikulsakul, N., Byon, E., Huang, S., Sheng, S., and You, M., 2014, Condition Monitoring of Wind Power System with Nonparametric Regression Analysis, IEEE Transactions on Energy Conversion, Vol. 29, No. 2, pp. 288-299.DOI
20 
Garoudja, E., Harrou, F., Sun, Y., Kara, K., Chouder, A., and Silvestre, S., 2017, Statistical Fault Detection in Photovoltaic Systems, Solar Energy, Vol. 150, pp. 485-499.DOI
21 
Haupenthal, S., Siqueira, J. A. C., Tokura, L. K., Nogueira, C. E. C., Vilas-Boas, M. A., do Nascimento, L. F. J., and Rocha, E. O., 2018, Evaluation of a Photovoltaic Energy System Applied to a Drip Irrigation System, Journal of Agricultural Science, Vol. 10, pp. 43-55.DOI
22 
Filho, S., Abdon, E., Müller, B., Holland, N., Reise, C., Kiefer, K., Kollosch, B., and Branco, P. J. C., 2022, Practical recommendations for the design of automatic fault detection algorithms based on experiments with field monitoring data, Solar Energy, Vol. 244, pp. 227-241.DOI
23 
Lim, H. W., Kim, I. K., Kim, J. H., and Shin, U. C., 2022, Simulation-Based Fault Detection Remote Monitoring System for Small-Scale Photovoltaic Systems, Energies, Vol. 15.DOI
24 
NIST/SEMATECH e-Handbook of Statistical Methods: https://www.itl.nist.gov/div898/handbook/index.htm.URL
25 
Engineering ToolBox: https://www.engineeringtoolbox.com.URL
26 
openHAB: https://www.openhab.org/docs/.URL
27 
Chen, L. Y.., Adi, V. S. K., and Laxmidewi, R., 2022, Shell and Tube Heat Exchanger Flexible Design Strategy for Process Operability, Case Studies in Thermal Engineering, Vol. 37.DOI