KJACR
Korean Journal of
Air-Conditioning and Refrigeration Engineering
SAREK
Contact
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
http://journal.auric.kr/kjacr
Mobile QR Code
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Korean J. Air-Cond. Refrig. Eng.
Open Access, Monthly
Open Access
Monthly
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
Online Submission
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
윤리규정
Research &
Publication Ethics
논문투고안내
Instructions to Authors
BM
(Business Model)
연락처
Contact Info
논문투고
Online-Submission
Journal Search
Home
Archive
2025-08
(Vol.37 No.08)
10.6110/KJACR.2025.37.8.384
Journal XML
XML
PDF
INFO
REF
References
1
IEA, Statistics report 2022, Global Status Report for Buildings and Construction.
2
Le Quéré, C., Andrew, R. M., Friedlingstein, P., and Zhu, D., 2018, Global Carbon Budget 2017, Earth System Science Data, Vol. 10, No. 1, pp. 405-448.
3
Costa, A., Keane, M. M., Torrens, J. I., and Corry, E., 2013, Building operation and energy performance: Monitoring, analysis and optimisation toolkit, Applied Energy, Vol. 101, No. 1, pp. 310-316.
4
IEA, 2022, Buildings, Available: https://www.iea.org/reports/buildings.
5
Shin, J. H. and Cho, Y. H., 2017, Predicting of the Geothermal Heat Pump System Coefficient of Performance using Artificial Neural Network, Journal of The Korean Society of Living Environmental System, Vol. 24, No. 5, pp. 562-567.
6
Mauthner, F. and Weeiss, W., 2014, Solar Heat Worldwide 2012, SHC, IEA.
7
Han, Y., 2018, Performance Evaluation of Solar Thermal Storage Tank with Heat Exchange Coils (M.S. thesis), Kyung Hee University, Seoul, Korea.
8
Renewables 2015 Global Status Report, 2015, REN21, Paris, p. 19.
9
Hong, H. K., 2004, 3% Use of Alternative Energy in 2006 and Solar Thermal System, Magazine of the SAREK, Vol. 33, No. 11, pp. 47-54.
10
Kang, I. S., Moon, J. W., and Park, J. C., 2017, Recent Research Trends of Artificial Intelligent Machine Learning in Architectural Field - Review of Domestic and International Journal Papers, Journal of the Architectural Institute of Korea Structure & Construction, Vol. 33, No. 4, pp. 63-68.
11
Soon, H., Kim, S., and Jang, Y., 2020, LSTM-Based 24-Hour Solar Power Forecasting Model Using Weather Forecast Data, KIISE Transactions on Computing Practices, Vol. 26, No. 10, pp. 435-441.
12
Lee, H. J., Yoon, S. C., Jung, H. H., Yoo, S. J., Kwak, Y. J., Kim, J. H., and Kim, H. R., 2023, Photovoltaic Power Generation Forecasting for Wide-Area Power Systems Using Deep Learning, Proceedings of the KIEE Conference, pp. 484-485.
13
Choi, J. H., Lim, J. T., and Yoo, J. S., 2023, LSTM-Based Photovoltaic Power Generation Forecasting Considering Facility and Weather Data, Journal of the Korea Contents Association, Vol. 23, No. 5, pp. 150-157.
14
Yaïci, W. and Entchev, E., 2014, Performance Prediction of a Solar Thermal Energy System Using Artificial Neural Networks, Applied Thermal Engineering, Vol. 73, No. 1, pp. 1348-1359.
15
Xie, H., Liu, L., Ma, F., and Fan, H., 2009, Performance Prediction of Solar Collectors Using Artificial Neural Networks, Conference on Artificial Intelligence and Computational Intelligence, Vol. 2, pp. 573-576.
16
An, Y. J., Lee, T. K., and Kim, K. H., 2021, Prediction of Photovoltaic Power Generation Based on LSTM Considering Daylight and Solar Radiation Data, The Transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 8, pp. 1096-1101.
17
Choi, T. G., 2021, A Study on the Performance Evaluation of Building Integrated Forced Circulation Solar Water Heater (M.S. thesis), Kyung Hee University, Seoul, Korea.
18
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., 2014, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, The Journal of Machine Learning Research, Vol. 15, No. 1, pp. 1929-1958.
19
ASHRAE, 2014, ASHRAE Guideline 14-2014: Measurement of Energy and Demand Savings, ASHRAE, Atlanta, GA, USA.
20
Ramirez, S. G., Hales, R. C., Williams, G. P., and Jones, N. L., 2022, Extending SC-PDSI-PM with Neural Network Regression Using GLDAS Data and Permutation Feature Importance, Environmental Modelling & Software, Vol. 157, 105475.