Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
IEA, Statistics report 2022, Global Status Report for Buildings and Construction.URL
2 
Le Quéré, C., Andrew, R. M., Friedlingstein, P., and Zhu, D., 2018, Global Carbon Budget 2017, Earth System Science Data, Vol. 10, No. 1, pp. 405-448.URL
3 
Costa, A., Keane, M. M., Torrens, J. I., and Corry, E., 2013, Building operation and energy performance: Monitoring, analysis and optimisation toolkit, Applied Energy, Vol. 101, No. 1, pp. 310-316.DOI
4 
IEA, 2022, Buildings, Available: https://www.iea.org/reports/buildings.URL
5 
Shin, J. H. and Cho, Y. H., 2017, Predicting of the Geothermal Heat Pump System Coefficient of Performance using Artificial Neural Network, Journal of The Korean Society of Living Environmental System, Vol. 24, No. 5, pp. 562-567.URL
6 
Mauthner, F. and Weeiss, W., 2014, Solar Heat Worldwide 2012, SHC, IEA.URL
7 
Han, Y., 2018, Performance Evaluation of Solar Thermal Storage Tank with Heat Exchange Coils (M.S. thesis), Kyung Hee University, Seoul, Korea.URL
8 
Renewables 2015 Global Status Report, 2015, REN21, Paris, p. 19.URL
9 
Hong, H. K., 2004, 3% Use of Alternative Energy in 2006 and Solar Thermal System, Magazine of the SAREK, Vol. 33, No. 11, pp. 47-54.URL
10 
Kang, I. S., Moon, J. W., and Park, J. C., 2017, Recent Research Trends of Artificial Intelligent Machine Learning in Architectural Field - Review of Domestic and International Journal Papers, Journal of the Architectural Institute of Korea Structure & Construction, Vol. 33, No. 4, pp. 63-68.DOI
11 
Soon, H., Kim, S., and Jang, Y., 2020, LSTM-Based 24-Hour Solar Power Forecasting Model Using Weather Forecast Data, KIISE Transactions on Computing Practices, Vol. 26, No. 10, pp. 435-441.DOI
12 
Lee, H. J., Yoon, S. C., Jung, H. H., Yoo, S. J., Kwak, Y. J., Kim, J. H., and Kim, H. R., 2023, Photovoltaic Power Generation Forecasting for Wide-Area Power Systems Using Deep Learning, Proceedings of the KIEE Conference, pp. 484-485.URL
13 
Choi, J. H., Lim, J. T., and Yoo, J. S., 2023, LSTM-Based Photovoltaic Power Generation Forecasting Considering Facility and Weather Data, Journal of the Korea Contents Association, Vol. 23, No. 5, pp. 150-157.DOI
14 
Yaïci, W. and Entchev, E., 2014, Performance Prediction of a Solar Thermal Energy System Using Artificial Neural Networks, Applied Thermal Engineering, Vol. 73, No. 1, pp. 1348-1359.DOI
15 
Xie, H., Liu, L., Ma, F., and Fan, H., 2009, Performance Prediction of Solar Collectors Using Artificial Neural Networks, Conference on Artificial Intelligence and Computational Intelligence, Vol. 2, pp. 573-576.DOI
16 
An, Y. J., Lee, T. K., and Kim, K. H., 2021, Prediction of Photovoltaic Power Generation Based on LSTM Considering Daylight and Solar Radiation Data, The Transactions of The Korean Institute of Electrical Engineers, Vol. 70, No. 8, pp. 1096-1101.DOI
17 
Choi, T. G., 2021, A Study on the Performance Evaluation of Building Integrated Forced Circulation Solar Water Heater (M.S. thesis), Kyung Hee University, Seoul, Korea.URL
18 
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., 2014, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, The Journal of Machine Learning Research, Vol. 15, No. 1, pp. 1929-1958.DOI
19 
ASHRAE, 2014, ASHRAE Guideline 14-2014: Measurement of Energy and Demand Savings, ASHRAE, Atlanta, GA, USA.URL
20 
Ramirez, S. G., Hales, R. C., Williams, G. P., and Jones, N. L., 2022, Extending SC-PDSI-PM with Neural Network Regression Using GLDAS Data and Permutation Feature Importance, Environmental Modelling & Software, Vol. 157, 105475.DOI