Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
Kozai, T., Niu, G., and Takagaki, M., 2019, Plant factory: An indoor vertical farming system for efficient quality food production (2nd ed.), Academic Press.URL
2 
Benke, K. and Tomkins, B., 2017, Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture, Sustainability: Science, Practice and Policy, Vol. 13, No. 1, pp. 13-26.DOI
3 
Lee, D. Y., Lee, S. M., and Choi, E. J., 2025, Development of Predictive Model for Building-integrated Rooftop Greenhouse using Artificial Neural Networks, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 37, No. 4, pp. 185-195. 10.6110/KJACR.2025.37.4.185.DOI
4 
Wang, L. and Iddio, E,. 2022, Energy performance evaluation and modeling for an indoor farming facility, Sustainable Energy Technologies and Assessments, Vol. 52, pp. 102240.DOI
5 
Jerszurki, D., Saadon, T., Zhen, J., Agam, N., Tas, E., Rachmilevitch, S., and Lazarovitch, N., 2021, Vertical microclimate heterogeneity and dew formation in semi-closed and naturally ventilated tomato greenhouses, Scientia Horticulturae, Vol. 288, pp. 110271.DOI
6 
Fatnassi, H., Bournet, P. E., Boulard, T., Roy, J. C., Molina-Aiz, F. D., and Zaaboul, R., 2023, Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems: A review, Biosystems Engineering, Vol 230, pp. 388-408.DOI
7 
Katsoulas, N. and Stanghellini, C., 2019, Modelling crop transpiration in greenhouses: Different models for different applications, Agronomy, Vol. 9, No. 7, p. 392.DOI
8 
Sarailoo, H., Campbell, L., and Bougherara, H,. 2025, A Comprehensive Review on the Application of Computational Fluid Dynamics in Enhancing Indoor Vertical Farm Microclimate, Journal of Biosystems Engineering, Vol. 50, pp. 145-169.DOI
9 
Plas, W. and De Paepe, M., 2022, Using CFD to improve flow conditions in vertical farms using realistic plant geometries, In XXXI International Horticultural Congress (IHC2022): International Symposium on Advances in Vertical Farming, Vol. 1369, pp. 49-56.DOI
10 
Kang, L., Zhang, Y., Kacira, M., and Van Hooff, T., 2024, CFD simulation of air distributions in a small multi-layer vertical farm: Impact of computational and physical parameters, Biosystems Engineering, Vol. 243, pp. 148-174.DOI
11 
Versteeg, H. K., 2007, Introduction to computational fluid dynamics: The finite volume method, 2/E., Pearson Education India.URL
12 
Mõttus, M., Sulev, M., Baret, F., Lopez-Lozano, R., and Reinart, A., 2012, Photosynthetically active radiation: measurement and modeling, Encyclopedia of sustainability science and technology, Springer, pp. 7970-8000.URL
13 
Oh, W., Ooka, R., Kikumoto, H., and Lee, S., 2024, Effects of ventilation rate and social distancing on risk of transmission of disease: A numerical study using Eulerian-Lagrangian method, Aerosol Science and Technology, Vol. 58, No. 1, pp. 70-90.DOI
14 
Lee, D., Choi, E. J., Lee, S. M., and Oh, W., 2024, Feasibility of a water-cooled LED system for climate uniformity in indoor plant factory using numerical analysis, in X International Symposium on Light in Horticulture, Vol. 1423, pp. 121-128.DOI
15 
Wilson, J. D., 1985, Numerical studies of flow through a windbreak, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 21, pp. 119-154.DOI
16 
Graamans, L., Van den Dobbelsteen, A., Meinen, E., and Stanghellini, C., 2017, Plant factories; crop transpiration and energy balance, Agricultural Systems, Vol. 153, pp. 138-147.DOI