Mobile QR Code QR CODE
Export citation EndNote
1 
Comby-Peyrot, I., Bernard, F., Bouchard, P.O., Bay, F., and Garcia-Diaz, E. (2009) Development and Validation of a 3D Computational Tool to Describe Concrete Behaviour at Meso-scale. Application to the Alkali-silica Reaction. Computational Materials Science 46(1), 1163-1177.DOI
2 
Cusatis, G. and Bazant, Z. P. (2006) Size Effect on Compression Fracture of Concrete with or Without V-notches a numerical meso-mechanical study. Computational Moedelling of Concrete Structures-Meschke, de Borst, Mang & Bicanic (eds.), Taylor & Francis Group, London.Google Search
3 
Gonnerman, H. F. (1925) Effect of Size and Shape of Test Specimen on Compressive Stress of Concrete. ASTM Pro-ceeding 25(1), 237-250.Google Search
4 
Grassl, P. and Rempling, R. (2008) A Damage-plasticity Interface Approach to the Mesoꠓscale Modelling of Concrete Subjected to Cyclic Compressive Loading. Engineering Fracture Me-chanics 75(16), 4804-4818.DOI
5 
Guo, Z. H. (2004) Concrete strength and constitutive relation: principle and application. China Architecture and Building Press. (book in Chinese, ISBN: 9787112062782)Google Search
6 
Hashin, Z. and Shtrikman, S. (1963) Variational Approach to the Theory of the Elastic Behavior of Multiphase Material. Journal of the Mechanics and Physics of Solids 11(2), 127-140.DOI
7 
Hordijk, D. A. (1992) Tensile and Tensile Fatigue Behaviour of Concrete; Experiments, Modelling and Analyses. Heron 37(1), 179.Google Search
8 
Huang, Y., Yang, Z., Ren, W., Liu, G., and Zhang, C. (2015) 3D Meso-scale Fracture Modelling and Validation of Concrete based on In-situ X-ray Computed Tomography Images Using Damage Plasticity Model. International Journal of Solids and Structures 67-68, 340-352.Google Search
9 
Kim, J. K., Eo, S. H., and Yi, S. T. (1997) Size Effect of Compressive Strength of Concrete for the Non-standard Cylindrical Specimens. Journal of Korea Concrete Institute 9(1), 105-113. (in Korean).Google Search
10 
Kim, J. K., Yi, S. T., and Yang, E. I. (1999) Size Effect for Flexural Compressive Strength of Concrete. Journal of Korea Concrete Institute 11(2), 157-165. (in Korean)Google Search
11 
Kim, S. M. and Adu Al-Rub, R. K. (2011) Meso-scale Computational Modeling of the Plastic-damage Response of Cementitious Composites. Cement and Concrete Research 41(1), 339-358.DOI
12 
Lee, J. and Fenves, G.L. (1998) Plastic-damage Model for Cyclic Loading of Concrete. Journal of Engineering Mechanics 124(8), 892-900.DOI
13 
López, C. M., Carol, I., and Aguado, A. (2008) Meso-structural Study of Concrete Fracture Using Interface Elements. II: Compression, Biaxial and Brazilian Test. Materials and Structures, 41(3), 601-620.DOI
14 
Lubliner, J., Oliver, J., Oller, S., and Oñate, E. (1989) A Plastic-damage Model for Concrete. International Journal of Solids and Structures 25(3), 299-326.DOI
15 
MLIT (2009) Concrete Construction Standard Specifications. Ministry of Land, Infrastructure, and Transport. (in Korean)Google Search
16 
Nagai, K., Sato, Y., and Ueda, T. (2004) Mesoscopic Simulation of Failure of Mortar and Concrete by 2D RBSM. Journal of Advanced Concrete Technology 2(3), 359-374.DOI
17 
Nagai, K., Sato, Y., and Ueda, T. (2005) Mesoscopic Simulation of Failure of Mortar and Concrete by 23 RBSM. Journal of Advanced Concrete Technology 3(3), 385-402.DOI
18 
Rhee, I. K. and Kim, W. (2006) Effects of Numerical Modeling on Concrete Heterogeneity. Journal of Korea Concrete Institute 18(2), 189-198. (in Korean)DOI
19 
Shahbeyk, S., Hosseini, M., and Yaghoobi, H. (2011) Mesoscale Finite Element Prediction of Concrete Failure. Computational Materials Science 50(1), 1973-1990.DOI
20 
Yi, S. T. (2000) Size effect for compressive strength of concrete. Ph.D Dissertation, Korea Advanced Institute of Science and Technology. (in Korean)Google Search