Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

  1. ๋ถ€์‚ฐ๊ด‘์—ญ์‹œ์˜ํšŒ ์ž…๋ฒ•์ •์ฑ…๋‹ด๋‹น๊ด€์‹ค ์—ฐ๊ตฌ์œ„์› (Busan Metropolitan Council Legislation&Policy Office)
  2. ๋ถ€์‚ฐ๋Œ€ํ•™๊ต ๋„์‹œ๊ณตํ•™๊ณผ ๊ต์ˆ˜ (Pusan National University)


ํƒ์‹œํ™œ์„ฑํ™”, ํƒ์‹œํ™˜์Šนํ• ์ธ, ํƒ์‹œํ™˜์Šน ์ˆ˜์š”, ์ˆœ์„œํ˜• ๋กœ์ง“ ๋ชจํ˜•
Taxi activation, Taxi transfer discount, Taxi demand, Ordered logit model

  • 1. ์„œ ๋ก 

  •   1.1 ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 

  •   1.2 ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ•

  • 2. ์ด๋ก ์  ๊ณ ์ฐฐ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ† 

  •   2.1 ์ˆœ์„œํ˜• ๋กœ์ง“๋ชจ๋ธ์— ๋Œ€ํ•œ ์ด๋ก ์  ๊ณ ์ฐฐ

  •   2.2 ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ† 

  • 3. ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ ์ด์šฉ์‹คํƒœ

  •   3.1 ๋Œ€์ค‘๊ตํ†ต ๋ฐ ํƒ์‹œ ์š”๊ธˆ ์ง€๋ถˆ ์ˆ˜๋‹จ

  •   3.2 ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์‹ค์ 

  • 4. ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์ˆ˜์š” ๋ชจํ˜•

  •   4.1 ์กฐ์‚ฌ์˜ ๊ฐœ์š”

  •   4.2 ํƒ์‹œํ™˜์Šนํ• ์ธ์— ๋Œ€ํ•œ ์‹œ๋ฏผ์˜๊ฒฌ

  •   4.3 ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ ๋ฐ ๊ธฐ์ดˆํ†ต๊ณ„

  •   4.4 ๋ชจํ˜• ๊ตฌ์ถ• ๊ฒฐ๊ณผ

  •   4.5 ํƒ„๋ ฅ์„ฑ ๋ถ„์„

  • 5. ๊ฒฐ ๋ก 

1. ์„œ ๋ก 

1.1 ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ 

๋ถ€์‚ฐ์‹œ ํƒ์‹œ ์Šน๊ฐ์€ 1997๋…„์— ํ•˜๋ฃจ 1,080์ฒœ๋ช…์ด๋˜ ๊ฒƒ์ด 2017๋…„์—๋Š” 769์ฒœ๋ช…์œผ๋กœ ์ง€๋‚œ 20๋…„๊ฐ„ 28.9%๊ฐ€ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ์Šน๊ฐ๊ฐ์†Œ๋Š” ํƒ์‹œ์‚ฐ์—…์˜ ๊ฒฝ์Ÿ๋ ฅ์„ ์žƒ์–ด๊ฐ€๋Š” ํฐ ์›์ธ์ด ๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋ถ€์‚ฐ์‹œ๋Š” ํƒ์‹œ์‚ฐ์—… ํ™œ์„ฑํ™” ๊ณ„ํš์˜ ์ผํ™˜์œผ๋กœ ํƒ์‹œ์ด์šฉ์ˆ˜์š”๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด 2017๋…„ 10์›” ๋ถ€์‚ฐ์‹œ๋Š” ๋ฒ„์Šค๋‚˜ ์ง€ํ•˜์ฒ ๊ณผ ๊ฐ™์€ ๋Œ€์ค‘๊ตํ†ต์—์„œ ํƒ์‹œ๋กœ ํ™˜์Šนํ•  ๋•Œ ํƒ์‹œ ๊ธฐ๋ณธ์š”๊ธˆ ์ผ๋ถ€๋ฅผ ํ• ์ธํ•˜๋Š” ํƒ์‹œ ํ™˜์Šนํ• ์ธ์ œ๋ฅผ ์‹ค์‹œํ–ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜, ํƒ์‹œํ™˜์Šนํ• ์ธ ์‹ค์ ์„ ๋ณด๋ฉด ์‹œํ–‰ ์ดˆ๊ธฐ์—๋Š” ์ผ์ผ 300~370๋ช…์ด ์ด์šฉํ•˜์˜€๊ณ , ํƒ์‹œํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์ด ๊ธฐ์กด 500์›์—์„œ 1,000์›์œผ๋กœ ์ธ์ƒ๋œ ํ›„์—๋Š” ์ผํ‰๊ท  466๋ช…์ด ์ด์šฉํ•˜๊ณ  ์žˆ์–ด, ๋ถ€์‚ฐ์‹œ ์ „์ฒด ํƒ์‹œ์ด์šฉ์ˆ˜์š” 769์ฒœ๋ช…๊ณผ ๋น„๊ตํ•œ๋‹ค๋ฉด ๋งค์šฐ ์ ์€ ์ˆ˜์ค€์ด๋ฉฐ, ๋‹น์ดˆ ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ํ•˜๋ฃจ 75,000ํšŒ ์ •๋„ ์˜ˆ์ƒํ•˜์˜€์Œ์„ ๊ฐ์•ˆํ•œ๋‹ค๋ฉด, ํ˜„์žฌ ์ƒํ™ฉ์ด ํƒ์‹œํ™˜์Šนํ• ์ธ์ด ์ƒˆ๋กœ์šด ํƒ์‹œ์ด์šฉ์ˆ˜์š” ์ฐฝ์ถœ์ด๋ผ๋Š” ๋ณธ๋ž˜์˜ ๋ชฉ์ ์„ ์ด๋ฃจ๊ณ  ์žˆ๋‹ค ๋ณด๊ธฐ๋Š” ์–ด๋ ค์›Œ ๋ณด์ธ๋‹ค.

์ƒˆ๋กœ์šด ์ •์ฑ…์ด ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ •์ฑ…์˜ ์ˆ˜ํ˜œ๋Œ€์ƒ์ž์˜ ํ–‰ํƒœ๋ถ„์„ ๋“ฑ์„ ํ†ตํ•˜์—ฌ ์„ธ๋ถ€์ ์ธ ์‹œํ–‰๋ฐฉ๋ฒ•์„ ์ถฉ๋ถ„ํžˆ ๊ฒ€ํ† ํ•˜๋Š” ์‚ฌ์ „์ค€๋น„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒ์‹œํ™˜์Šนํ• ์ธ์˜ ์ด์šฉ์‹คํƒœ๋ฅผ ์‚ดํŽด๋ณด๊ณ  ์ด์šฉ์ž๊ฐ€ ํƒ์‹œํ™˜์Šน ํ• ์ธ ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ œ๋ฐ˜์š”์ธ์„ ํŒŒ์•…ํ•จ์œผ๋กœ์จ ํ–ฅํ›„ ์ •์ฑ… ๋ฐฉํ–ฅ์— ํ•„์š”ํ•œ ์‚ฌํ•ญ์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•œ๋‹ค.

1.2 ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ•

๋ณธ ์—ฐ๊ตฌ๋Š” 2017๋…„ 10์›” ์‹œํ–‰ํ•œ โ€˜ํƒ์‹œํ™˜์Šนํ• ์ธ์ œโ€™๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด์šฉํ™˜๊ฒฝ๊ณผ ํ•จ๊ป˜ ์ด์šฉ์—ฌ๋ถ€ ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ฃผ์š”์š”์ธ์„ ๋Œ€ํ•ด ๊ฒ€ํ† ํ•ด ๋ณด๊ณ ์ž ํ•œ๋‹ค.

์ด๋ฅผ ์œ„ํ•ด ๋ถ€์‚ฐ์‹œ๋ฏผ 300๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ, ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฆฌ์ปคํŠธํ˜• ์‘๋‹ต์„ ํšŒ๊ท€์‹์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ์šฉ์ดํ•œ ์ˆœ์„œํ˜• ๋กœ์ง“๋ชจํ˜•์„ ํ™œ์šฉํ•˜์—ฌ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์˜ํ–ฅ ๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜์—ฌ ์ด์šฉ์—ฌ๋ถ€์— ๋ฏธ์น˜๋Š” ์ฃผ์š”์š”์ธ์„ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํƒ์‹œํ™˜์Šนํ• ์ธ ์š”๊ธˆ์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ด์šฉ์ž์˜ ์ด์šฉ๋ฅ  ๋ณ€ํ™”๋ฅผ ํŒŒ์•…ํ•˜์—ฌ ์ˆ˜์š”์˜ ๊ฐ€๊ฒฉํƒ„๋ ฅ์„ฑ์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ํ™˜์Šนํ• ์ธ ์ •์ฑ…์— ํšจ์œจ์„ฑ์„ ๊ธฐํ•  ์ˆ˜ ์žˆ๋Š” ์ ์ •ํ™˜์Šนํ• ์ธ๊ธˆ์•ก์„ ์‚ฐ์ •ํ•œ๋‹ค.

ํ•œํŽธ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๊ธฐ์ดˆ ํ†ต๊ณ„์ž๋ฃŒ๋Š” ๋ถ€์‚ฐ์‹œ์™€ ํƒ์‹œ์กฐํ•ฉ์ด ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” ํƒ์‹œ๊ธฐ๋ณธํ˜„ํ™ฉ, ํ™˜์Šน ๋ฐ ๊ตํ†ต์นด๋“œ ์ด์šฉ์‹ค์ , ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์‹ค์  ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค.

2. ์ด๋ก ์  ๊ณ ์ฐฐ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ† 

2.1 ์ˆœ์„œํ˜• ๋กœ์ง“๋ชจ๋ธ์— ๋Œ€ํ•œ ์ด๋ก ์  ๊ณ ์ฐฐ

์‚ฌํšŒํ˜„์ƒ์˜ ๋ณตํ•ฉ์ ์ด๊ณ  ๋‹ค์–‘ํ•œ ๋ฐ˜์‘๋“ค์„ ๊ณผํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๊ณ„๋Ÿ‰์  ๋ถ„์„ ๋ชจ๋ธ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘ ์ˆœ์„œํ˜• ๋กœ์ง“ ๋ชจํ˜•(Ordered Logit Model)์€ ์ข…์†๋ณ€์ˆ˜๊ฐ€ ์—ฐ์†ํ˜•์ด ์•„๋‹Œ ์„œ์ˆ˜ํ˜• ๋ฐ์ดํ„ฐ, ์ฆ‰ ์ƒ๋Œ€์  ์ˆœ์„œ๋งŒ ์•Œ๋ ค์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ์‚ฌ์šฉ๋˜๋Š” ๋ชจํ˜•์œผ๋กœ, ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘๋œ ๋ฆฌ์ปคํŠธํ˜• ์‘๋‹ต์„ ํšŒ๊ท€์‹์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ์šฉ์ดํ•œ ๋ชจํ˜•์ด๋‹ค.

์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํƒ์‹œํ™˜์Šน ์ด์šฉ์ž์˜ ๊ฐœ์ธํŠน์„ฑ๊ณผ ์ •์ฑ…์— ๋Œ€ํ•œ ์„ ํ˜ธ ๋“ฑ์ด ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์— ์–ด๋–ค ์š”์ธ๋“ค์ด ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์‹ค์ฆ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด Ordinal Logit Model (์ˆœ์„œํ˜•๋กœ์ง“๋ชจ๋ธ)์„ ์‚ฌ์šฉํ•˜๊ณ , ํƒ์‹œํ™˜์Šนํ• ์ธ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ„์˜ oddsโ€“ratio๋ฅผ ์ƒํ˜ธ ๋น„๊ตํ•˜์—ฌ ์šฐ์„ ์ˆœ์œ„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.

2.2 ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ† 

๋ถ€์‚ฐ์‹œ๊ฐ€ ์‹œํ–‰ํ•˜๊ณ  ์žˆ๋Š” ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ๋Š” ๋ฒ„์Šค๋‚˜ ์ง€ํ•˜์ฒ ๊ณผ ๊ฐ™์€ ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์„ ๋จผ์ € ์ด์šฉํ•œ ํ›„ ํƒ์‹œ๋กœ ํ™˜์Šนํ•จ๊ณผ ๋™์‹œ์— ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋กœ ๊ฒฐ์ œํ–ˆ์„ ๋•Œ ํƒ์‹œ์š”๊ธˆ์—์„œ ์ผ์ •๊ธˆ์•ก์„ ํ• ์ธํ•ด์ฃผ๋Š” ์ œ๋„๋กœ 2017๋…„ 10์›” 30์ผ๋ถ€ํ„ฐ ์‹œํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ์‹œํ–‰ ์ดˆ๊ธฐ์—๋Š” ํƒ์‹œํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์„ 500์›์œผ๋กœ ํ•˜์˜€์œผ๋‚˜, ์ด ํ›„ ์ €์กฐํ•œ ์ด์šฉ๋ฅ ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด 2018๋…„ 5์›” 1์ผ๋ถ€ํ„ฐ ํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์„ 1,000์›์œผ๋กœ ์ธ์ƒํ•˜์˜€๋‹ค.

ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ์— ๋Œ€ํ•œ ์š”๊ตฌ๋Š” ๋Œ€์ค‘๊ตํ†ต ํ™˜์Šนํ• ์ธ์ด ์‹œํ–‰๋œ 2000๋…„๋Œ€ ํ›„๋ฐ˜๋ถ€ํ„ฐ ํƒ์‹œ์—…๊ณ„๊ฐ€ ์ง€์†์ ์œผ๋กœ ํ•ด ์™”์œผ๋ฉฐ, ์ด์— ๋Œ€ํ•ด Ann(2015), Yeon and Ju(2015)๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ํƒ์‹œ๋Š” ์™ธ๊ตญ๊ณผ ๋น„๊ตํ•˜๋ฉด ์š”๊ธˆ์ด ์ €๋ ดํ•˜์—ฌ ์ผ๋ฐ˜์‹œ๋ฏผ์ด ๋ˆ„๊ตฌ๋‚˜ ํŽธํ•˜๊ฒŒ ์ด์šฉํ•˜๊ณ  ์žˆ๊ณ , ๋Œ€์ค‘๊ตํ†ต์ง€์„ ์„ ์—ฐ๊ฒฐํ•˜๋Š” ๋ณด์กฐ๊ธฐ๋Šฅ๋„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์ค€๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ฃผ์žฅ๊ณผ ํ•จ๊ป˜ ์นจ์ฒด๋œ ํƒ์‹œ์‚ฐ์—…์˜ ๋ฐœ์ „์„ ์œ„ํ•ด ํƒ์‹œํ™˜์Šนํ• ์ธ์˜ ๋„์ž…์„ ์ œ์•ˆํ–ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ํƒ์‹œ๊ฐ€ ๋ฒ•๋ น์ƒ ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์ด ์•„๋‹ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋Œ€์ค‘๊ตํ†ต์˜ ํ™˜์Šน๋ณด์กฐ๊ธˆ ์ œ๋„๊ฐ€ ์ „์ ์œผ๋กœ ์ •๋ถ€์žฌ์ •์— ์˜์กดํ•˜๋Š” ํ˜„ ์ƒํ™ฉ์—์„œ โ€˜ํƒ์‹œํ™˜์Šนํ• ์ธ์ œโ€™๋ฅผ ๋„์ž…ํ•  ๊ฒฝ์šฐ ์ •๋ถ€์žฌ์ •์— ๋งŽ์€ ๋ถ€๋‹ด์„ ์ค„ ๊ฒƒ์ด๋ผ๋Š” ์šฐ๋ ค๊ฐ€ ๋†’์•„ ๋„์ž…์ด ์‹คํ˜„๋˜์ง€๋Š” ๋ชปํ–ˆ๋‹ค.

์ด์— Song et al.(2009)์€ ํƒ์‹œ๊ฐ€ ์ œ๋„์ ์œผ๋กœ ๋Œ€์ค‘๊ตํ†ต์ด ์•„๋‹ˆ๊ณ  door-to-door ์„œ๋น„์Šค๋ฅผ ํ•˜๋Š” ๊ณ ๊ธ‰๊ตํ†ต์ˆ˜๋‹จ์ด๋ฏ€๋กœ ๋„์‹ฌ์ง€์—ญ์€ โ€˜ํƒ์‹œํ™˜์Šนํ• ์ธโ€™ ๋„์ž…์— ์‹ ์ค‘ํ•ด์•ผ ํ•˜๋ฉฐ, ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์ด ๋ถ€์กฑํ•˜์—ฌ ํƒ์‹œ๊ฐ€ ์ค€๋Œ€์ค‘๊ตํ†ต ์„ฑ๊ฒฉ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ๋„์‹œ์™ธ๊ณฝ์ง€์—ญ์— ๋Œ€ํ•ด ์„ ๋ณ„ํ•˜์—ฌ ์‹œํ–‰ํ•  ๊ฒƒ์„ ์ œ์•ˆํ•œ ๋ฐ” ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ง€๊ธˆ๊นŒ์ง€ ๋ถ€์‚ฐ์‹œ๋ฅผ ์ œ์™ธํ•œ ํƒ€ ๋„์‹œ์—์„œ ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ๋„์ž…ํ•œ ์‚ฌ๋ก€๊ฐ€ ์—†์–ด ์‹œํ–‰์— ๋”ฐ๋ฅธ ์ด์šฉ์ƒํ™ฉ, ์ œ๋ฐ˜์—ฌ๊ฑด์— ๋”ฐ๋ฅธ ์ด์šฉ์ˆ˜์š”, ๊ทธ๋ฆฌ๊ณ  ์‹ค์ˆ˜์š”์ž์ธ ์ผ๋ฐ˜์‹œ๋ฏผ์˜ ์„ ํ˜ธ๋„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค.

3. ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ ์ด์šฉ์‹คํƒœ

3.1 ๋Œ€์ค‘๊ตํ†ต ๋ฐ ํƒ์‹œ ์š”๊ธˆ ์ง€๋ถˆ ์ˆ˜๋‹จ

Table 1์€ ๋Œ€์ค‘๊ตํ†ต ์š”๊ธˆ์ง€๋ถˆ์ˆ˜๋‹จ ์ด์šฉํ˜„ํ™ฉ์œผ๋กœ ๊ตํ†ต์นด๋“œ๋Š” ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ๊ฐ„ ํ™˜์Šน ์‹œ ํ• ์ธ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์ด ์žˆ์–ด ํ˜„๊ธˆ๋ณด๋‹ค ๋งŽ์ด ์ด์šฉ๋˜๊ณ  ์žˆ๋Š” ์‹ค์ •์ด๋‹ค. ๊ตํ†ต์นด๋“œ ์ค‘์—์„œ๋„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊ฐ€ ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋ณด๋‹ค ๋ฒ„์Šค๋Š” 17%, ๋„์‹œ์ฒ ๋„๋Š” 36% ๊ฐ€๋Ÿ‰ ๋” ๋งŽ์ด ์ด์šฉ๋˜๊ณ  ์žˆ๋Š”๋ฐ ์ด๋Š” ํ›„๋ถˆ๊ตํ†ต์นด๋“œ์˜ ๊ฒฝ์šฐ ๋ฏธ๋ฆฌ ํ˜„๊ธˆ์„ ์ถฉ์ „ํ•ด์•ผ ํ•˜๋Š” ๋ถˆํŽธ์ด ์—†๊ณ  ์‹ ์šฉ์นด๋“œ๋ฅผ ๊ธฐ๋Šฅ๊ณผ ๋™์‹œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด ํŽธ๋ฆฌํ•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Table 1. Current Status of Public Transportation Payment Method in Busan (as of 2017)

Classification Cash Transportation payment card
Total Prepaid Postpaid
Metro 10% 90% 27% 63%
Inter city bus 6% 94% 37% 54%

Source : Internal data of Department of Public Transportation in Busan

Table 2๋Š” 2017๋…„ ํƒ์‹œ์š”๊ธˆ ์ง€๋ถˆ์ˆ˜๋‹จ์œผ๋กœ ๊ตํ†ต์นด๋“œ ์ด์šฉํ˜„ํ™ฉ์œผ๋กœ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ์˜ ์ด์šฉ์ด ์ „์ฒด ์นด๋“œ์‚ฌ์šฉ ๊ฑด์ˆ˜ 55,947,949๊ฑด ์ค‘ 98.9%์ธ 55,318,105๊ฑด์œผ๋กœ ๋Œ€๋‹ค์ˆ˜๋ฅผ ์ฐจ์ง€ํ•˜๊ณ  ์žˆ๋‹ค. ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์ธ ๋„์‹œ์ฒ ๋„, ์‹œ๋‚ด๋ฒ„์Šค ์š”๊ธˆ์ง€๋ถˆ ์‹œ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๋ฅผ 63%, 54% ์ด์šฉํ•˜๋Š” ๊ฒƒ๊ณผ ๋น„๊ตํ•  ๋•Œ ์›”๋“ฑํžˆ ๋†’์€ ์ˆ˜์ค€์œผ๋กœ, ์ด๋Š” ํƒ์‹œ์š”๊ธˆ์ด ๋ฒ„์Šค๋‚˜ ์ง€ํ•˜์ฒ  ์š”๊ธˆ๋ณด๋‹ค ๋น„์‹ธ ์„ ์ถฉ์ „ํ•ด์•ผ ํ•˜๋Š” ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋ณด๋‹ค ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๋ฅผ ๋”์šฑ ์„ ํ˜ธํ•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Table 2. Current Status of Prepaid Traffic Cards and Postpaid in Busan (as of 2017)

Classification Total Prepaid Postpaid
Payment Number 55,947,949 629,844 55,318,105
(100.0%) (1.1%) (98.9%)
Payment Amount (thousand won) 409,031,272 2,718,682 406,312,590
(100.0%) (0.7%) (99.3%)

Source : Internal data of Department of Public Transportation in Busan

ํ˜„ํ–‰, ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ๋Š” ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ์— ํ•œ์ •๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํƒ์‹œ์š”๊ธˆ ๊ฒฐ์ œ์‹œ ๊ตํ†ต์นด๋“œ๋Š” ๋Œ€๋ถ€๋ถ„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์–ด ํ™˜์Šนํ• ์ธ ๊ฒฐ์ œ์ˆ˜๋‹จ์„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊นŒ์ง€ ํ™•๋Œ€ ํ•˜์˜€์„ ๋•Œ ์ด์šฉ์ˆ˜์š”๊ฐ€ ์ƒ๋‹นํžˆ ์ฆ๊ฐ€ ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

3.2 ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์‹ค์ 

Table 3์€ ํ™˜์Šนํ• ์ธ ๊ธˆ์•ก๋ณ„ ์›”๋ณ„ ์„ ๋ถˆ์นด๋“œ ๋ฐ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์‹ค์ ์ด๋‹ค.

Table 3. Taxi Transfer Discount use Performance

Transfer discount amount 500 won discount 1,000 won discount
Aver. '17.11. '17.12. '18.1. '18.2. '18.3. '18.4. Aver. '18.5. '18.6.
Number of prepaid card payments (A) 57,446 58,231 61,363 55,670 51,915 60,051 60,484 68,988 67,603 70,373
Monthly transfer discount performance (B) 10,071 11,017 11,494 9,402 8,187 10,418 9,907 14,215 14,462 13,968
Daily transfer discount performance 333 367 371 303 292 336 330 466 467 466
Transfer ratio (B/A,%) 17.5% 18.9% 18.7% 16.9% 15.8% 17.3% 16.4% 20.6% 21.4% 19.8%
Note : The number of payment by prepaid card per 1 month is 51,338 (average during 2017.1~2017.10)
Source : Internal data of Department of Public Transportation in Busan

๋จผ์ €, ๋ถ€์‚ฐ์‹œ ํƒ์‹œํ™˜์Šนํ• ์ธ ์‹ค์ ์„ ์‚ดํŽด๋ณด๋ฉด ํ• ์ธ๊ธˆ์•ก์ด 500์›์ธ 2017๋…„ 11์›”๋ถ€ํ„ฐ 2018๋…„ 4์›”๊นŒ์ง€๋Š” ์ผ์ผ ํ‰๊ท  333๊ฑด์ด๊ณ , ํ™˜์Šนํ• ์ธ๊ธˆ์•ก์ด 1,000์›์ธ 2018๋…„ 5~6์›”์—๋Š” ์ผ์ผ ํ‰๊ท  466๊ฑด์œผ๋กœ ํ™˜์Šน ํ• ์ธ 500์› ์ถ”๊ฐ€ ํ˜œํƒ์— ํƒ์‹œํ™˜์Šน ์‹ค์ ์ด ์ผ์ผ 133๊ฑด, 40.0%๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค.

์„ ๋ถˆ์นด๋“œ ์ด์šฉ์‹ค์ ์„ ์‚ดํŽด๋ณด๋ฉด ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ ์‹œํ–‰ํ•˜์ง€ ์•Š์•˜๋˜ 2017๋…„ 1์›”๋ถ€ํ„ฐ 10์›”๊นŒ์ง€ ์›”ํ‰๊ท  51,338๊ฑด์ด ์‚ฌ์šฉ๋˜๋˜ ๊ฒƒ์ด ํ™˜์Šนํ• ์ธ์œผ๋กœ 500์›์„ ์ง€์›ํ•œ 2017๋…„ 11์›”๋ถ€ํ„ฐ 2018๋…„ 4์›”๊นŒ์ง€ ์›”ํ‰๊ท  57,446๊ฑด์ด ์‚ฌ์šฉ๋˜์–ด ์„ ๋ถˆ์นด๋“œ ์‚ฌ์šฉ์ด 12.0% ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ํ™˜์Šนํ• ์ธ๊ธˆ์•ก์ด 1,000์›์„ ๋Š˜์–ด๋‚œ 2018๋…„ 5์›”๋ถ€ํ„ฐ 6์›”๊นŒ์ง€๋Š” ์›”ํ‰๊ท  68,988๊ฑด์ด ์‚ฌ์šฉ๋˜์–ด ์„ ๋ถˆ์นด๋“œ ์‚ฌ์šฉ์ด ํ™˜์Šนํ• ์ธ ์‹œํ–‰ ์ „์— ๋น„ํ•ด 34.6%๊ฐ€ ๋Š˜์–ด๋‚ฌ๋‹ค.

์„ ๋ถˆ๊ตํ†ต์นด๋“œ ๊ฒฐ์žฌ ์ค‘ ํ™˜์Šนํ• ์ธ์ด ์ฐจ์ง€ํ•˜๋Š” ๋น„์ค‘์„ ์‚ดํŽด๋ณด๋ฉด, ํ• ์ธ๊ธˆ์•ก 500์›์ผ ๋•Œ ํ‰๊ท ์€ 17.4%์œผ๋กœ, ํ• ์ธ๊ธˆ์•ก 1,000์› ์ผ ๋•Œ 20.6%๋กœ ๋‹ค์†Œ ์ฆ๊ฐ€ํ•˜์—ฌ ํƒ์‹œํ™˜์Šนํ• ์ธ์ด ์„ ๋ถˆ์นด๋“œ ์ด์šฉ์„ ๋†’์ด๋Š” ์š”์ธ์ด ๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

4. ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์ˆ˜์š” ๋ชจํ˜•

4.1 ์กฐ์‚ฌ์˜ ๊ฐœ์š”

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ถ€์‚ฐ์‹œ๊ฐ€ ์‹œํ–‰ํ•œโ€˜ํƒ์‹œํ™˜์Šนํ• ์ธโ€™์— ๋Œ€ํ•œ ์‹œ๋ฏผ์˜์‹์„ ํŒŒ์•…ํ•˜๊ณ ์ž ๋ถ€์‚ฐ์‹œ๋ฏผ 300๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ์กฐ์‚ฌ๋Š” โ€˜ํƒ์‹œํ™˜์Šนํ• ์ธโ€™์‹œํ–‰ ํ›„ 1๊ฐœ์›” ๊ฒฝ๊ณผํ•œ 2017๋…„ 12์›” 5์ผ๋ถ€ํ„ฐ 20์ผ๊นŒ์ง€ ์ด 15์ผ๊ฐ„ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ, ์„ค๋ฌธ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์กฐ์‚ฌ ์ด์ „์— ์„ฑ์‹คํžˆ ์‘๋‹ตํ•  ์—ฌ๋ถ€๋ฅผ ๋จผ์ € ํŒŒ์•…ํ•˜์—ฌ 1:1 ๋ฉด์ ‘์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์—ฌ ์‘๋‹ต์ž์˜ ์ดํ•ด๋ฅผ ๋†’์˜€๋‹ค. ์ƒ์„ธํ•œ ๋‚ด์šฉ์€ Table 4์™€ ๊ฐ™๋‹ค.

Table 4. Survey Overview

Classification Contents
Date December 5 - December 20, 2017 (15 days)
Object A resident of Busan
Method A 1:1 interview
Contents General characteristics, transit behavior, opinions on
;taxi transfer discount and willingness to use it
Effective rate 100% (300 copies of total 300 copies recovered)

4.2 ํƒ์‹œํ™˜์Šนํ• ์ธ์— ๋Œ€ํ•œ ์‹œ๋ฏผ์˜๊ฒฌ

ํƒ์‹œํ™˜์Šนํ• ์ธ์— ๋Œ€ํ•œ ์‹œ๋ฏผ ์˜๊ฒฌ์€ Table 5์™€ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํƒ์‹œํ™˜์Šนํ• ์ธ์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜๋Š๋ƒ์— ๋Œ€ํ•œ ์‘๋‹ต์œผ๋กœ โ€˜์ฐฌ์„ฑํ•œ๋‹คโ€™๋Š” ์‘๋‹ต์ด 45.7% (์ฐฌ์„ฑ 36.7%, ๋งค์šฐ์ฐฌ์„ฑ 9.0%)๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ด๋Š” โ€˜๋ฐ˜๋Œ€ํ•œ๋‹คโ€™๋Š” ์‘๋‹ต์ธ 17.7% (๋ฐ˜๋Œ€ 13.0%, ๋งค์šฐ๋ฐ˜๋Œ€ 4.7%)๋ณด๋‹ค ๋‘๋ฐฐ์ด์ƒ ๋†’์•„ ์ •์ฑ…์— ๋Œ€ํ•œ โ€˜์ฐฌ์„ฑโ€™์˜๊ฒฌ์ด ๋‹ค์ˆ˜์ธ ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋ฐ˜๋ฉด, ์ฐฌ๋ฐ˜์„ ๊ตฌ์ฒด์ ์œผ๋กœ ๋ฐํžˆ์ง€ ์•Š์€ โ€˜๋ณดํ†ต์ด๋‹คโ€™๋Š” ๋‹ต๋ณ€์ด 36.7%๋กœ ๋Œ€์ฒด๋กœ ๋†’์•„ ์‹œํ–‰์ดˆ๊ธฐ์ธ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ •์ฑ…์— ๋Œ€ํ•œ ํŒ๋‹จ์„ ์•„์ง ์œ ๋ณดํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Table 5. Comments on Taxi Transfer Discounts and Results of Questionnaire Survey

Classification Strongly Yes Yes Nomal No Strongly No
Approval for taxi
transfer discount
Frequency 27 110 110 39 14
Percent (%) 9.0 36.7 36.7 13.0 4.7
Transfer discounts are
small or large
Frequency 45 109 137 7 2
Percent (%) 15.0 36.3 45.7 2.3 0.7
Willingness to change transportation
payment method
Frequency 3 19 46 186 46
Percent (%) 1.0 6.3 15.3 62.0 15.3
Willingness to use when expanding
the post-paid transportation card
Frequency 51 138 67 37 7
Percent (%) 17.0 46.0 22.3 12.3 2.3

ํƒ์‹œํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์˜ ์ ์ •์„ฑ์— ๋Œ€ํ•œ ์‘๋‹ต์œผ๋กœ 500์› ํ™˜์Šนํ• ์ธ์— ๋Œ€ํ•ด โ€˜ํ• ์ธ๊ธˆ์•ก์ด ์ ๋‹คโ€™๋Š” ์‘๋‹ต์ด 51.3% (๋งค์šฐ์ ์Œ 15%, ์ ์Œ 36.3%), โ€˜๋ณดํ†ต์ด๋‹คโ€™์ด 45.7%, โ€˜ํ• ์ธ๊ธˆ์•ก์ด ๋†’๋‹คโ€™๋Š” ์‘๋‹ต์ด 3.0% (๋†’์Œ 2.3%, ๋งค์šฐ๋†’์Œ 0.7%)๋กœ ์‹œ๋ฏผ๋“ค์€ ๋Œ€์ฒด๋กœ ํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์ด ๋†’์ง€ ์•Š์•„ ์ƒํ–ฅ์กฐ์ •์ด ํ•„์š”ํ•˜๋‹ค ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.

ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ๋ฐ›๊ธฐ ์œ„ํ•ด ํ˜„ํ–‰ ์š”๊ธˆ์ง€๋ถˆ ๋ฐฉ๋ฒ•์„ ์„ ๋ถˆ์นด๋“œ ๋ฐฉ์‹์œผ๋กœ ๋ณ€๊ฒฝํ•  ์˜ํ–ฅ์ด ์žˆ๋Š๋ƒ๋Š” ์งˆ๋ฌธ์— ๋Œ€ํ•ด์„œ๋Š” โ€˜๊ต์ฒด ์˜ํ–ฅ ์—†์Œโ€™์ด 77.3% (์ „ํ˜€์—†์Œ 15.3%, ์—†์Œ 62.0%)๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ด๋Š” โ€˜๊ต์ฒด ์˜ํ–ฅ ์žˆ๋‹คโ€™๋Š” ์‘๋‹ต 7.3% (๋งค์šฐ์žˆ์Œ 1.0%, ์žˆ์Œ 6.3%) ๋ณด๋‹ค 70.0%P ๊ฐ€๋Ÿ‰ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋‹จ์ง€ ์‹œ๋ฏผ๋“ค์ด ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ๋ฐ›๊ธฐ ์œ„ํ•ด์„œ ์ด์šฉํ•˜๊ณ  ์žˆ๋Š” ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๋ฅผ ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋กœ ๋ฐ”๊ฟ€ ๊ฐ€๋Šฅ์„ฑ์ด ๋‚ฎ์œผ๋ฏ€๋กœ ๊ฒฐ์žฌ์ˆ˜๋‹จ์— ๋Œ€ํ•œ ์žฌ๊ฒ€ํ† ๊ฐ€ ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

ํ˜„ํ–‰ ํ™˜์Šนํ• ์ธ ๋ฐฉ๋ฒ•์„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊นŒ์ง€ ํ™•๋Œ€ ํ•  ๊ฒฝ์šฐ ์ด์šฉ ์˜ํ–ฅ์ด ์žˆ๋Š๋ƒ๋Š” ๊ฒฐ์ œ์ˆ˜๋‹จ ๋‹ค์–‘ํ™” ์‹œ ์ด์šฉ์˜ํ–ฅ์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด์„œ๋Š” โ€˜์ด์šฉ ์˜ํ–ฅ ์žˆ๋‹คโ€™๊ฐ€ 63.0% (๋งค์šฐ ์žˆ์Œ 17.0%, ์žˆ์Œ 46.0%)๋กœ ์กฐ์‚ฌ๋˜์—ˆ์œผ๋ฉฐ, โ€˜์ด์šฉ ์˜ํ–ฅ ์—†๋‹คโ€™๋Š” ์‘๋‹ต์€ 14.6% (์ „ํ˜€์—†์Œ 2.3%, ์—†์Œ 12.3%)๋กœ ๋‚ฎ๊ฒŒ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ํ†ตํ•ด ํƒ์‹œ์ด์šฉ์ˆ˜์š”๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ• ์ธ์š”๊ธˆ ์ง€๋ถˆ์ˆ˜๋‹จ์„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊นŒ์ง€ ํ™•๋Œ€ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค.

Table 6์€ ํƒ์‹œํ™˜์Šนํ• ์ธ์˜ ๋ฌธ์ œ์ ์— ๋Œ€ํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ์‘๋‹ต์œผ๋กœ, โ€˜์„ ๋ถˆ์นด๋“œ๋ฅผ ์ด์šฉํ•˜์ง€ ์•Š์œผ๋ฉด ํ˜œํƒ ์ ์šฉ ์•ˆ๋˜๋Š” ๋ฌธ์ œโ€™๋ฅผ 48.0%๋กœ ๊ฐ€์žฅ ๋งŽ์ด ์ง€์ ํ•˜์˜€์œผ๋ฉฐ, โ€˜์ด์šฉ ๋ฐ ํ• ์ธ๋ฐฉ๋ฒ•์ด ๋ณต์žกํ•จโ€™์ด 20.0%, โ€˜์„ ๋ถˆ์นด๋“œ์— ์ถฉ๋ถ„ํ•œ ๊ธˆ์•ก ๋ฏธ ์ถฉ์ „์‹œ ํ• ์ธํ˜œํƒ ์—†์Œโ€™์ด 9.0% ์ˆœ์œผ๋กœ ์‘๋‹ตํ•˜์—ฌ, ํ™˜์Šนํ• ์ธ ๋ฐฉ๋ฒ•์ด ์–ด๋ ต๊ณ  ๋ถˆํŽธํ•˜๋‹ค ํ‰๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ ์™ธ์—๋„โ€˜ํƒ์‹œ์— ์„ธ๊ธˆ์ง€์›์ด ๋ถˆํ•ฉ๋ฆฌํ•จโ€™์ด 12.0%, โ€˜๋ง‰๋Œ€ํ•œ ์žฌ์ •ํˆฌ์ž…์œผ๋กœ ์‹œ ๋ถ€๋‹ด ๊ฐ€์ค‘โ€™์ด 8.7%๋กœ ๋ฌธ์ œ์ ์œผ๋กœ ์ง€์ ํ–ˆ๋‹ค.

Table 6. Problem with Taxi Transfer Discounter Plan in Busan

Classification Frequency Percent (%)
Complex usage and discount methods 60 20.0
Limit the usage to prepaid cards 144 48.0
Inconvenient to charge money in advance 27 9.0
Increased city budget burden 26 8.7
The absurdity of tax support on private sector 36 12.0
etc 7 2.3
sum 300 100.0

4.3 ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ ๋ฐ ๊ธฐ์ดˆํ†ต๊ณ„

์„ค๋ฌธ์กฐ์‚ฌ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์— ๋ฏธ์น˜๋Š” ์š”์ธ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ์ˆœ์„œํ˜• ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด์— ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์˜ํ–ฅ์„ ์ข…์†๋ณ€์ˆ˜๋กœ, ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ๊ณผ ํ•œ ๋‹ฌ ๊ตํ†ต๋น„, ์—ฐ๋ น, ํ†ตํ–‰๋ชฉ์ , ์ฃผ ๊ตํ†ต์ˆ˜๋‹จ, 1์ฃผ์ผ๊ฐ„ ํƒ์‹œ ์ด์šฉํšŸ์ˆ˜ ๋ฐ ์ง€๋ถˆ์ˆ˜๋‹จ์„ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ์„ค๋ช…์€ Table 7๊ณผ ๊ฐ™๋‹ค. ๋‹จ, ํƒ์‹œํ™˜์Šนํ• ์ธ ์ ์šฉ์€ ์„ ๋ถˆ์นด๋“œ ์ด์šฉ ์‹œ์—๋งŒ ์ ์šฉ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค.

Table 7. Configuration of Variables

Classification Variables Content value
Dependent variable Intention to use taxi transfer discount Never use 1
Disable 2
Use 3
Always use 4
Independent variable Transfer Discount Amount (Only prepaid card) 0won, 250won, 500won, 750won, 1,000won, 1,250won, 1,500won, 1,800won
Age Under 30 1
30s 2
40s 3
50s and above 4
(Trip) Purpose Commuting (to job or school) 1
Besides that 2
(Main) Transportation Car 1
Besides that 2
(Payment) Method Prepaid Card 1
Besides that 2
Monthly transportation expenses Under 30,000won 1
From 30,000 ~ under 50,000won 2
From 50,000 ~ under 70,000won 3
From 70,000 ~ under 90,000won 4
From 90,000 ~ under 110,000won 5
Above 110,000won 6
Number of taxis in 1 week 0 1
1 2
Above 2 3

4.4 ๋ชจํ˜• ๊ตฌ์ถ• ๊ฒฐ๊ณผ

์„ ์ •๋œ ๋ณ€์ˆ˜๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ํƒ์‹œํ™˜์Šนํ• ์ธ๊ธˆ์•ก ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉํ™•๋ฅ ์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๊ตฌ์ถ•๋œ ๋ชจํ˜•์˜ ๊ฒฐ๊ณผ๋Š” Table 8์™€ ๊ฐ™๋‹ค.

Table 8. Ordinal Logit Model Analysis Results

Classification odds-ratio B Estimate Std. Error Wald df sig. 95% Confidence Interval
Lower bound Upper bound
Threshold [Intend = 1] never use - -.468** .186 6.303 1 .012 -.834 -.103
[Intend = 2] disable - 2.584*** .191 182.361 1 .000 2.209 2.959
[Intend = 3] use - 4.978*** .212 549.748 1 .000 4.562 5.394
Location Transfer Discount Amount 1.002 .002*** .000 843.858 1 .000 .002 .003
Monthly transportation expenses 1.104 .099*** .024 16.709 1 .000 .052 .146
Number of taxis in 1 week 1.167 .154*** .049 9.907 1 .002 .058 .250
Age 0.875 -.134*** .038 12.296 1 .000 -.209 -.059
[Purpose=1] Commuting 1.339 .292*** .092 9.993 1 .002 .111 .473
[Purpose=2] besides that . 0a . . 0 . . .
[Transportation]=1] Car 0.764 -.270*** .099 7.358 1 .007 -.465 -.075
[Transportation]=2] besides that . 0a . . 0 . . .
[Method=1] Prepaid card 1.365 .311** .136 5.203 1 .023 .044 .578
[Method=2] besides that . 0a . . 0 . . .
MF Test Chi-squared 1125.754
df 7
p .000
TPL Test Chi-squared 98.955
df 14
p .000
-2Log likelihood (early -2Log likelihood) 3619.175 (4744.928)
๐œŒ2 (Nagelkerke) .408
Note 1) a. This Parameter is set to zero because it is redundant.
2) *** means p-value<0.01, ** means p-value<0.05

๋จผ์ € ๋ชจํ˜• ์ ํ•ฉ ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ชจํ˜• ์ ํ•ฉ(MF Test)๊ณผ ํ‰ํ–‰์„ฑ ๊ฒ€์ •(TPL Test) ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด, ์œ ์˜์ˆ˜์ค€์ด 0.000์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ๋ชจํ˜•์ด ์ ํ•ฉํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋ชจํ˜•์˜ ์„ค๋ช…๋ ฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ฯยฒ๊ฐ’์€ 0.408๋กœ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ์ผ๋ฐ˜์ ์œผ๋กœ ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„์—์„œ๋Š” ฯยฒ ๊ฐ’์ด 0.2~0.4์ผ ๊ฒฝ์šฐ ๋ชจํ˜•์ด ์ ํ•ฉํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜๋ฏ€๋กœ ๋ณธ ๋ชจํ˜•์˜ ์„ค๋ช…๋ ฅ์„ ํ™•๋ณดํ•˜์˜€๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋ชจํ˜•์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ตฌ์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๋ฉด, ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ์˜ ๋ณ€์ˆ˜์˜ ๊ณ„์ˆ˜์ถ”์ •์น˜(์ดํ•˜, B ์ถ”์ •๊ฐ’)์€ ์–‘(+)์˜ ๋ถ€ํ˜ธ๋กœ, odds๋น„1)๊ฐ€ 1.002๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ ํ• ์ธ๊ธˆ์•ก์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ํ™•๋ฅ ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ˜„์žฌ ํƒ์‹œ๋Š” ์ผ๋ฐ˜ ๋Œ€์ค‘๊ตํ†ต์ˆ˜๋‹จ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๊ตํ†ต๋น„์šฉ์— ๋Œ€ํ•œ ๋ถ€๋‹ด์ด ๋†’์ง€๋งŒ ์–ด๋””์„œ๋“  ์‰ฝ๊ฒŒ ํƒ‘์Šนํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด, ํƒ์‹œํ™˜์Šนํ• ์ธ ๊ธˆ์•ก์ด ๋†’์•„์ ธ ๊ฐœ์ธ์ด ๋ถ€๋‹ดํ•ด์•ผํ•˜๋Š” ๋น„์šฉ์ด ๋‚ฎ์•„์ง„๋‹ค๋ฉด ํƒ์‹œํ™˜์Šน์„ ์ด์šฉํ•  ํ™•๋ฅ ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ์ด๋ผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹จ, ํƒ€ ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค์— ๋น„ํ•ด B ์ถ”์ •๊ฐ’์ด ๋‚ฎ๊ฒŒ ์ถ”์ •๋˜์—ˆ๋Š”๋ฐ, ์ด๋Š” ํƒ€ ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค์€ ๋”๋ฏธํ™”๋ฅผ ํ†ตํ•ด ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€์œผ๋‚˜ ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ์˜ ๊ฒฝ์šฐ โ€˜์›โ€™๋‹จ์œ„๋กœ ๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ์‚ฐ์ถœ๋œ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

odds๋น„๋Š” ์Šน์‚ฐ๋น„๋กœ, ์Šน์‚ฐ๋น„๊ฐ€ 1๋ณด๋‹ค ํด ๊ฒฝ์šฐ ๋ณ€์ˆ˜๊ฐ’์ด ์ปค์งˆ์ˆ˜๋ก ์‚ฌ๊ฑด๋ฐœ์ƒ์˜ ํ™•๋ฅ ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ 1๋ณด๋‹ค ์ž‘์„ ๊ฒฝ์šฐ์—๋Š” ๋ณ€์ˆ˜๊ฐ’์ด ์ปค์งˆ์ˆ˜๋ก ์‚ฌ๊ฑด๋ฐœ์ƒ์˜ ํ™•๋ฅ ์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•จ. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋‚จ์„ฑ๋Œ€๋น„ ์—ฌ์„ฑ์˜ odds๋น„๊ฐ€ 0.25์ผ ๊ฒฝ์šฐ ์—ฌ์„ฑ์ด ๋‚จ์„ฑ๋ณด๋‹ค ์‚ฌ๊ฑด๋ฐœ์ƒ์œจ์ด 25๋ฐฐ ๋‚ฎ์Œ์„ ์˜๋ฏธ

ํ•œ ๋‹ฌ ๊ตํ†ต๋น„์˜ B ์ถ”์ •๊ฐ’์€ ์–‘(+)์˜ ๋ถ€ํ˜ธ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ odds๋น„๊ฐ€ 1.104๋กœ ์‚ฐ์ถœ๋˜์—ˆ๋‹ค. ์ด๋Š” ํ•œ ๋‹ฌ ๊ตํ†ต๋น„๋ฅผ ํ•œ ๋‹จ์œ„ ๋” ๋งŽ์ด ์ง€์ถœํ• ์ˆ˜๋ก ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์˜์‚ฌ๊ฐ€ 1.104๋ฐฐ ๋†’์•„์ง„๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ธฐ์กด ๊ตํ†ต๋น„๋ฅผ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ๋žŒ์˜ ๊ฒฝ์šฐ ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ๋„์˜ ์‹œํ–‰์ด ๊ฐœ์ธ์˜ ๊ตํ†ต๋น„์šฉ ๋ถ€๋‹ด์„ ์ค„์ด๋Š”๋ฐ ๋„์›€์ด ๋œ๋‹ค๊ณ  ํŒ๋‹จํ•˜๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค.

1์ฃผ์ผ๊ฐ„ ํƒ์‹œ ์ด์šฉํšŸ์ˆ˜์˜ ๊ฒฝ์šฐ B ์ถ”์ •๊ฐ’์ด ์–‘(+)์˜ ๋ถ€ํ˜ธ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰, 1์ฃผ์ผ๊ฐ„ ํƒ์‹œ ์ด์šฉํšŸ์ˆ˜๊ฐ€ ๋งŽ์„์ˆ˜๋ก ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ์ด์šฉํ•  ์˜ํ–ฅ์ด ๋”์šฑ ๋†’๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์ œ ํƒ์‹œ๋ฅผ ๋งŽ์ด ์ด์šฉํ• ์ˆ˜๋ก ํ™˜์Šนํ• ์ธ ํ˜œํƒ์„ ์ ์šฉ๋ฐ›์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜จ ๊ฒƒ์ด๋ผ ๋ณด์—ฌ์ง„๋‹ค.

์—ฐ๋ น์€ B ์ถ”์ •๊ฐ’์ด ์Œ(-)์˜ ๋ถ€ํ˜ธ์ด๋ฉฐ odds๋น„๊ฐ€ 0.875๋กœ, ์—ฐ๋ น๋Œ€๊ฐ€ ํ•œ ๋‹จ์œ„ ๋†’์•„์งˆ์ˆ˜๋ก ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์˜์‚ฌ๊ฐ€ 0.125๋ฐฐ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ์—ฐ๋ น๋Œ€๊ฐ€ ๋†’์„์ˆ˜๋ก ํƒ์‹œํ™˜์Šนํ• ์ธ์— ๋ถ€์ •์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์—ฐ๋ น๋Œ€๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์›”ํ‰๊ท  ๊ฐœ์ธ์†Œ๋“์ด ๋‚ฎ์€ ๊ฒฝํ–ฅ์ด ์žˆ์–ด ์š”๊ธˆ ํ• ์ธ์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ณ , ํƒ์‹œํ™˜์Šนํ• ์ธ ํ˜œํƒ์„ ์ ์šฉ๋ฐ›๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ตœ์†Œ 1ํšŒ ์ด์ƒ์˜ ํ™˜์Šนํ†ตํ–‰์ด ๋ฐœ์ƒํ•˜์—ฌ์•ผ ํ•˜๋Š”๋ฐ ์—ฐ๋ น๋Œ€๊ฐ€ ๋†’์„์ˆ˜๋ก ๊ฐ€๊ฒฉ ํ• ์ธ๋ณด๋‹ค ๊ณ ๊ธ‰๊ตํ†ต์ˆ˜๋‹จ ์ด์šฉ์— ๋”ฐ๋ฅธ ์ด๋™ ํŽธ์˜๊ฐ€ ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์ด๋ผ ์ƒ๊ฐ๋˜๋‚˜ ํ–ฅํ›„ ์„ธ๋ฐ€ํ•œ ๊ฒ€ํ† ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

๋˜ํ•œ ํ†ตํ–‰๋ชฉ์ ์ด ์ถœํ‡ด๊ทผยท๋“ฑํ•˜๊ต์ธ ๊ฒฝ์šฐ ๊ทธ ์™ธ ํ†ตํ–‰์— ๋น„ํ•ด ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ํ™•๋ฅ ์ด 1.339๋ฐฐ ๋†’์•„์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ถœํ‡ด๊ทผยท๋“ฑํ•˜๊ต์˜ ๊ฒฝ์šฐ ์ •๊ธฐ์ ์ด๊ณ  ์ง€์†์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ํ†ตํ–‰์œผ๋กœ, ๊ตํ†ต๋น„์— ๋Œ€ํ•œ ๋ถ€๋‹ด์ด ํด ๋ฟ ์•„๋‹ˆ๋ผ ์ผ๋ฐ˜์ ์œผ๋กœ ํ”ผํฌ์‹œ๊ฐ„์— ํ†ตํ–‰์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์ผ์ •์‹œ๊ฐ„ ๋‚ด ๋ฐ˜๋“œ์‹œ ํ†ตํ–‰์ด ์™„๋ฃŒ๋˜์–ด์•ผํ•˜๋ฏ€๋กœ ๋ณด๋‹ค ์‹ ์†ํ•œ ํ†ตํ–‰์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ •๊ธฐ์  ํ†ตํ–‰์„ ํ•˜๋Š” ์ง‘๋‹จ์ด ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์˜ํ–ฅ์— ๊ธ์ •์ ์œผ๋กœ ๋ฐ˜์‘ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.

์ฃผ๊ตํ†ต์ˆ˜๋‹จ์˜ ๊ฒฝ์šฐ ์Šน์šฉ์ฐจ๋ฅผ ์ด์šฉํ•˜๋Š” ๊ฒฝ์šฐ ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ์ด์šฉํ•  ์˜์‚ฌ๊ฐ€ ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ˜„์žฌ ๋ถ€์‚ฐ์‹œ์—์„œ ์‹œํ–‰ํ•˜๊ณ  ์žˆ๋Š” ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ๋„๋Š” ๋Œ€์ค‘๊ตํ†ต์„ ์„ ํƒ‘์Šนํ•œ ํ›„ ํƒ์‹œ๋ฅผ ํƒˆ ๊ฒฝ์šฐ ํ˜œํƒ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ์ฃผ๊ตํ†ต์ˆ˜๋‹จ์ด ์Šน์šฉ์ฐจ ๋˜๋Š” ํƒ์‹œ์ธ ๊ฒฝ์šฐ ํ˜œํƒ์˜ ๋Œ€์ƒ์— ํฌํ•จ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚œ ๊ฒƒ์ด๋ผ ํŒ๋‹จ๋œ๋‹ค.

๊ฒฐ์ œ์ˆ˜๋‹จ์˜ ๊ฒฝ์šฐ ์„ ๋ถˆ์นด๋“œ๋ฅผ ์ด์šฉํ•˜๋Š” ์ง‘๋‹จ์ด ๊ทธ๋ ‡์ง€ ์•Š์€ ์ง‘๋‹จ์— ๋น„ํ•ด ํƒ์‹œํ™˜์Šนํ• ์ธ์„ ์ด์šฉํ•  ์˜ํ–ฅ์ด 1.365๋ฐฐ ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ˜„์žฌ ์„ ๋ถˆ์นด๋“œ ์ด์šฉ์ž๋“ค์˜ ๊ฒฝ์šฐ ๋Œ€์ค‘๊ตํ†ต ์„ ํƒ‘์Šน ํ›„ ํƒ์‹œ๋กœ ํ™˜์Šน ์‹œ ์š”๊ธˆํ• ์ธํ˜œํƒ์„ ๋ฐ”๋กœ ์ ์šฉ๋ฐ›์„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ ํŒ๋‹จ๋œ๋‹ค.

ํ•œํŽธ, ์ถ”์ •๋œ ๋ชจ๋ธ์„ ๋ฐ”ํƒ•์œผ๋กœ ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ์ˆ˜์ค€๋ณ„ ์ด์šฉ๋ฅ ์„ ์‚ฐ์ •ํ•œ Table 9๋ฅผ ๋ณด๋ฉด, ํ˜„ ์š”๊ธˆ(3,300์›) ๋Œ€๋น„ 1,000์›์˜ ํ™˜์Šนํ• ์ธ์š”๊ธˆ์„ ์ ์šฉํ•  ๊ฒฝ์šฐ โ€˜์ด์šฉํ•จโ€™๊ณผ โ€˜๋ฐ˜๋“œ์‹œ ์ด์šฉํ•จโ€™์˜ ํ•ฉ๊ณ„๊ฐ€ 59.9%๋กœ ๊ณผ๋ฐ˜์ˆ˜๋ฅผ ์ดˆ๊ณผํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์˜ˆ์ธก๋˜์—ˆ๋‹ค. 3์ ˆ์˜ Table 3์—์„œ ์‚ดํŽด๋ณธ ๋ฐ”์™€ ๊ฐ™์ด, 2018๋…„ 5์›” 1์ผ ์ดํ›„ ํ™˜์Šนํ• ์ธ์š”๊ธˆ์ด 1,000์›์œผ๋กœ ํ™•๋Œ€๋œ ์ดํ›„ ์ด์šฉ๋ฅ ์ด ์ฆ๊ฐ€ํ•œ ๊ฒƒ์— ๋น„ํ•ด์„œ๋Š” ์ƒ๋‹นํžˆ ๋†’์€ ์ˆ˜์น˜์ด๋‚˜, ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ณ ๋ คํ•˜๋ฉด ํ• ์ธ์š”๊ธˆ ํ™•๋Œ€๊ฐ€ ํƒ์‹œ ์ด์šฉ๋ฅ  ์ฆ๊ฐ€์—๋Š” ์˜ํ–ฅ์„ ์ฃผ๊ณ  ์žˆ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค.

Table 9. Estimation of Taxi Transfer Discount Based on Discount Rate

Discount amount Never use Disable Use Always use
1800won 0.3% 8.3% 40.9% 50.3%
1500won 1.0% 15.7% 50.4% 33.1%
1250won 1.7% 25.0% 52.0% 21.2%
1000won 3.2% 36.9% 47.1% 12.8%
750won 5.9% 49.0% 37.7% 7.4%
500won 10.3% 58.6% 27.0% 4.1%
250won 17.4% 62.8% 17.5% 2.2%
0won 27.9% 60.3% 10.6% 1.3%

4.5 ํƒ„๋ ฅ์„ฑ ๋ถ„์„

์ถ”์ •๋œ ์ด์šฉ๋ฅ ์„ ํ™œ์šฉํ•˜์—ฌ ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ํƒ์‹œ์ด์šฉ ์ˆ˜์š”์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด ํƒ„๋ ฅ์„ฑ ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋จผ์ € Table 9์—์„œ ์ถ”์ •๋œ ๊ฐ’ ์ค‘ โ€˜์ด์šฉโ€™๋ฐ โ€˜๋ฐ˜๋“œ์‹œ ์ด์šฉโ€™์˜ ํ•ฉ๊ณ„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํƒ์‹œํ• ์ธ์š”๊ธˆ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ด์šฉํ™•๋ฅ ์„ Fig. 1๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. Fig. 1์„ ๋ณด๋ฉด, ํ• ์ธ์š”๊ธˆ์ด ํ™•๋Œ€๋ ์ˆ˜๋ก, ์ฆ‰ ํƒ์‹œํ™˜์Šน ์‹œ ๊ธฐ๋ณธ์š”๊ธˆ์ด ๋‚ฎ์•„์งˆ์ˆ˜๋ก ์ด์šฉ ์ˆ˜์š”๊ฐ€ ๋Š˜์–ด๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ์ผ๋ฐ˜์ ์ธ ์ˆ˜์š”-๊ฐ€๊ฒฉ์˜ ๊ด€๊ณ„์— ๊ด€ํ•œ ์ด๋ก ๊ณผ ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

Figure_KSCE_38_5_06_F1.jpg
Fig. 1.

Use Probability According to Discount Amount

ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ ์˜์‚ฌ๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ์˜ ์ด์šฉ๋ฅ ์„ ์ด์šฉํ•˜์—ฌ ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ ๋ณ€๋™์— ๋”ฐ๋ฅธ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ˆ˜์š”์˜ ๊ฐ€๊ฒฉํƒ„๋ ฅ์„ฑ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ๋Š” Fig. 2์™€ ๊ฐ™๋‹ค. ์ƒ์„ธํžˆ ์‚ดํŽด๋ณด๋ฉด, ํ• ์ธ์š”๊ธˆ์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ํƒ„๋ ฅ์„ฑ์ด ์ปค์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ, ํ• ์ธ์š”๊ธˆ์ด ์•ฝ 1550์›์ด ๋˜๋Š” ์ง€์ ์ด ํƒ„๋ ฅ์„ฑ์˜ ์ ˆ๋Œ€๊ฐ’์ด 1์ด ๋˜๋Š” ๋‹จ์œ„ํƒ„๋ ฅ์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ Fig. 2๋ฅผ ๋ณด๋ฉด ํ•ด๋‹น ์ง€์ ์˜ ์ด์šฉ๋ฅ ์ด ์•ฝ 85%๋กœ ์ถ”์ •๋œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

Figure_KSCE_38_5_06_F2.jpg
Fig. 2.

Demand Price Elasticity of Discount Amount

๋”ฐ๋ผ์„œ ํ• ์ธ์š”๊ธˆ์„ 1,550์›๊นŒ์ง€๋Š” ํ™˜์Šนํ• ์ธ์š”๊ธˆ ํ• ์ธ ์ฆ๊ฐ€ํญ๊ณผ ๋น„๊ตํ•ด ํ™˜์Šนํ• ์ธ ์ˆ˜์š” ์ฆ๊ฐ€ํญ์ด ๋†’์•„ ์ •์ฑ…์‹œํ–‰์˜ ํšจ๊ณผ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

5. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ํŒŒ์•…ํ•œ ์‹œ๋ฏผ์ธ์‹, ์ •์ฑ… ์ด์šฉ์— ๋Œ€ํ•œ ์ฃผ์š”๋ณ€์ˆ˜, ์ ์ •ํ• ์ธ ์ˆ˜์ค€์„ ํŒŒ์•…ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

์ฒซ์งธ, ์„ค๋ฌธ์„ ํ†ตํ•ด ์‚ดํŽด๋ณธ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ •์ฑ…์— ๋Œ€ํ•œ ๋ถ€์‚ฐ์‹œ๋ฏผ์˜ ๋ฐ˜์‘์€ ์šฐํ˜ธ์ ์ด๋ผ ํŒ๋‹จ๋œ๋‹ค. ๋‹ค๋งŒ, ์ž…์žฅ์„ ๋ณด๋ฅ˜ํ•˜๋Š” ์‘๋‹ต์ž๊ฐ€ ๋‹ค์ˆ˜ ์žˆ์–ด ํ–ฅํ›„ ์ •์ฑ…์˜ ์‹œํ–‰๋ฐฉํ–ฅ๊ณผ ๊ฒฐ๊ณผ์— ๋”ฐ๋ผ ์ฐฌ๋ฐ˜ ์—ฌ๋ก ์ด ๋ณ€ํ™”ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์œผ๋ฏ€๋กœ ์ง€์†์ ์ธ ์ •์ฑ…์ˆ˜ํ–‰์„ ์œ„ํ•ด์„œ๋Š” ์ •์ฑ…์˜ ํƒ€๋‹น์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  ํƒ์‹œํ™œ์„ฑํ™”์™€ ์‹œ๋ฏผ์ด์šฉํŽธ์˜๋ฅผ ํ™•๋ณดํ•˜๋Š” ๋…ธ๋ ฅ์ด ํ•„์š”ํ•˜๋‹ค.

๋‘˜์งธ, ์‹œ๋ฏผ๋“ค์ด ํƒ์‹œํ™˜์Šนํ• ์ธ ๋ฐฉ๋ฒ•์ด ๋ณต์žกํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์š”๊ธˆ์ง€๋ถˆ์ˆ˜๋‹จ์ด ์„ ๋ถˆ๊ตํ†ต์นด๋“œ๋กœ ํ•œ์ •๋œ ๊ฒƒ์„ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ ์œผ๋กœ ์ง€์ ํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์„ ํ™•๋Œ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฒฐ์žฌ์ˆ˜๋‹จ์„ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊นŒ์ง€ ํ™•๋Œ€ํ•˜๋Š” ๊ฒƒ์ด ์‹œ๊ธ‰ํ•˜๋‹ค. ํŠนํžˆ ์‹œ๋ฏผ๋“ค์ด ํ™˜์Šนํ• ์ธ ํ˜œํƒ์„ ๋ฐ›๊ธฐ์œ„ํ•ด ์„ ๋ถˆ์นด๋“œ์—์„œ ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๋กœ ๋ฐ”๊ฟ€ ์˜ํ–ฅ์ด ์ ๊ณ  ํ›„๋ถˆ๊ตํ†ต์นด๋“œ๊ฐ€ ํƒ์‹œํ™˜์Šนํ• ์ธ์ด ๊ฐ€๋Šฅํ•  ๋•Œ ์ด์šฉ ์˜ํ–ฅ์ด ๋งŽ์€ ๊ฒƒ์„ ๊ฐ์•ˆํ•  ๋•Œ ํ™˜์Šนํ• ์ธ๋ฐฉ๋ฒ•์˜ ์•ˆ๋‚ด, ์„ ๋ถˆ๊ตํ†ต์นด๋“œ ์ด์šฉ ํ™๋ณด ๋ณด๋‹ค๋Š” ํ™˜์Šนํ• ์ธ ๊ฒฐ์žฌ์ˆ˜๋‹จ์„ ํ›„๋ถˆ๊ตํ†ต๊นŒ์ง€ ํ™•๋Œ€๊ฐ€ ์šฐ์„ ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค.

์…‹์งธ, ํƒ์‹œํ™˜์Šนํ• ์ธ ์ ์ •์ˆ˜์ค€์€ ํ• ์ธ๊ธˆ์•ก์ด 500์›์€ ์ ๋‹ค๊ณ  ์ธ์‹ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ธˆ๋…„ 5์›” ํ™˜์Šนํ• ์ธ๊ธˆ์•ก์„ 1,000์›์œผ๋กœ 100%๋กœ ์ธ์ƒํ•˜์˜€์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ด์šฉ์‹œ๋ฏผ์ด ์ผํ‰๊ท  333๋ช…์—์„œ 466~467๋ช…์œผ๋กœ 130์—ฌ๋ช… ์ฆ๊ฐ€์— ๊ทธ์นœ ๊ฒƒ์„ ๊ฐ์•ˆํ•œ๋‹ค๋ฉด ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์„ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•ด ํƒ์‹œํ™˜์Šนํ• ์ธ์•ก์„ ์ƒํ–ฅ ์กฐ์ • ํ•  ํ•„์š”๊ฐ€ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋‹ค๋งŒ, ํšจ์œจ์ ์ธ ์ •์ฑ…์‹œํ–‰์„ ์œ„ํ•ด์„œ๋Š” ํ• ์ธ๊ธˆ์•ก ์ฆ๊ฐ€์œจ ๋Œ€๋น„ ์ด์šฉ์ˆ˜์š” ์ฆ๊ฐ€์œจ์ด ๋†’์€ 1,550์›๊นŒ์ง€๋Š” ํ• ์ธ๊ธˆ์•ก ์กฐ์ •์„ ๊ฒ€ํ† ํ•ด ๋ณผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค.

๋„ท์งธ, ํƒ์‹œํ™˜์Šนํ• ์ธ ์ด์šฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์€ ๊ฒฐ์ œ์ˆ˜๋‹จ, ํ†ตํ–‰๋ชฉ์ , ์ฃผ๊ตํ†ต์ˆ˜๋‹จ, 1์ฃผ์ผ๊ฐ„ ํƒ์‹œ์ด์šฉํšŸ์ˆ˜, ์—ฐ๋ น๋Œ€, ํ•œ ๋‹ฌ ๊ตํ†ต๋น„, ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ ์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ ํƒ์‹œํ™˜์Šนํ• ์ธ์š”๊ธˆ์˜ ๊ฒฝ์šฐ B ์ถ”์ •๊ฐ’์ด ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ํƒ€ ๋ณ€์ˆ˜๋“ค์˜ ๊ฒฝ์šฐ ๋”๋ฏธํ™”๋ฅผ ํ†ตํ•ด ๊ณ„์ˆ˜๊ฐ’์„ ์ถ”์ •ํ•˜์˜€์œผ๋‚˜ ํ• ์ธ์š”๊ธˆ์€ ์› ๋‹จ์œ„์˜ ๋ณ€ํ™”๋ฅผ ๊ฒ€ํ† ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์ด๋ผ ์‚ฌ๋ฃŒ๋œ๋‹ค.

ํ•œํŽธ ํ–ฅํ›„ ์ œ๋„๊ฐœ์„ ์œผ๋กœ ํƒ์‹œํ™˜์Šนํ• ์ธ์ œ ์ด์šฉ์ด ๋ณดํŽธํ™” ๋  ๊ฒฝ์šฐ ์žฌ์ • ํˆฌ์ž… ํ™•๋Œ€๊ฐ€ ์˜ˆ์ƒ๋˜๋Š” ๋งŒํผ ํ™œ์„ฑํ™” ์ดํ›„ ์‹œ๋ฏผ๋“ค์˜ ํ‰๊ฐ€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ ์žฌ์ •ํˆฌ์ž… ์ ์ •๊ทœ๋ชจ๋ฅผ ๊ฐ์•ˆํ•œ ์ œ๋„ ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

References

1 
Ann, K. J. (2015). โ€œTaxi use and operation in Seoul,โ€ Policy reports, Vol. 186, pp. 1-19 (in Korean).
2 
Busan Metropolitan City (2018). Passenger traffic survey results. (in Korean).
3 
Busan Metropolitan City (2017). Taxi Transportation Development Plan (in Korean).
4 
Han, J. H. and Kim, J. K. (2010). โ€œAnalysis of taxi service satisfaction using an ordered probit model.โ€ Transportation Technology and Policy, Vol. 7 (in Korean).
5 
Kang, S. U., Park, J. W., Ku, S. J., Pakr, S. J. and Choi, E. J. (2013). โ€œTaxi operations in world cities and policy implications for Korea.โ€ The Korea Transport Institute (in Korean).
6 
Lee, W. K. (2017). โ€œA plan to revitalize the taxi business and improve the working conditions of the transportation workers.โ€ Busan Development Institute (in Korean).
7 
Richard Williams (2016). โ€œUnderstanding and interpreting generalized ordered logit models.โ€ The Journal of Mathematical Sociology, Vol. 40, No. 1, pp. 7-20. 10.1080/0022250X.2015.1112384DOI
8 
Song, J. R., Lee, S. H. and Kim, S. J. (2009). โ€œA study on the discount fare of taxis transfer system.โ€ Gyeonggi Research Institute policy study, pp. 1-1 (in Korean).
9 
Stefan Boes and Rainer Winkelmann (2006). โ€œOrdered response models.โ€ Allgemeines Statistisches Archiv, Vol. 90, No. 1, pp. 167-181. 10.1007/s10182-006-0228-yDOI
10 
Yeon, J. Y. and Ju, J. H. (2015). โ€œUser-centered taxi service improvement directions.โ€ Monthly KOTI Magazine on Transport, Vol. 211, pp. 52-57 (in Korean).