Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)
1 
Chang, E.-E., Chen, T.-L., Pan, S.-Y., Chen, Y.-H., Chiang, P.-C (2013), Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed, J. Hazzar. Mater, Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed, J. Hazzar. Mater, 260, 937-346. 10.1016/j.jhazmat.2013.06.052238921600304-3894, 260, 937-346.DOI
2 
Chen, K.-W., Pan, S.-Y., Chen, C.-T., Chen, Y.-H., Chiang, P.-C. (2016), High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement, J. Clean. Prod, High-gravity carbonation of basic oxygen furnace slag for CO2 fixation and utilization in blended cement, J. Clean. Prod, 124, 350-360. 10.1016/j.jclepro.2016.02.0720959-6526, 124, 350-360.DOI
3 
Chang, E.-E. (2013), Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed, Journal of Hazardous Materials, Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed, Journal of Hazardous Materials, 260. 937-346. 10.1016/j.jhazmat.2013.06.052238921600304-3894, 260, 937-346.DOI
4 
(2016), Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar, Construction and Building Materials, 1072-1080. 10.1016/j.conbuildmat.2016.08.1480950-0618, 124, 1072-1080.DOI
5 
Huijgen, W.J.J., Witkamp, G.-J., Comans, R.N.J. (2005), Mineral CO2 Sequestration by Steel Slag Carbonation, Environ. Sci. Technol., 39, 9676-9682.DOI
6 
Lackner, K.S. (2002), Carbonate chemistry for sequestering fossil carbon, Annu. Rev. Energy Environ, Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ, 27, 193-232. 10.1146/annurev.energy.27.122001.0834331056-3466, 27, 193-232.DOI
7 
Saito, G, Sakai, E, Watanabe, K, Morioka, M, Otsuki, N (2008), Carbonation reaction of calcium silicate hydrates containing γ-2CaO-SiO2 and mechanisms of vaterite formation, J Soc Inorg Mater Japan, Carbonation reaction of calcium silicate hydrates containing γ-2CaO-SiO2 and mechanisms of vaterite formation. J Soc Inorg Mater Japan, 15, 284–92., 15, 284-92.Google Search
8 
Saito, T., Sakai, E., Morioka, M., Otsuki, N. (2010), Carbonation of γ-Ca2SiO2 and the Mechanism of Vaterite Formation, J. Adv. Concr. Technol., Carbonation of γ-Ca2SiO2 and the Mechanism of Vaterite Formation. J. Adv. Concr. Technol. 8, 273–280. 10.3151/jact.8.2731346-8014, 8, 273-280.DOI
9 
Santos, R.M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., Van Gerven, T. (2013), Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties, Int. J. Greenh. Gas Control, Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control, 17, 32–45. 10.1016/j.ijggc.2013.04.0041750-5836, 17, 32-45.DOI
10 
Chae, Soo-Chun, Jang, Young-Nam, Ry, Kyoung-Won (2009), Mineral Carbonation as a sequestration method of CO2, Journal of the Geological Society of Korea, Mineral Carbonation as a sequestration method of CO2, Journal of the Geological Society of Korea, 45(5), 527-555.0435-4036, 45(5), 527-555.Google Search
11 
Zhang, Zhihua, Huisingh, Donald (2017), Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production, Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production, 142, 1055-1064. 10.1016/j.jclepro.2016.06.1990959-6526, 142, 1055-1064.DOI