JKSMI
Journal of the Korea Institute for
Structural Maintenance and Inspection
KSMI
Contact
Open Access
Bi-monthly
ISSN : 2234-6937 (Print)
ISSN : 2287-6979 (Online)
http://journal.auric.kr/jksmi/
Mobile QR Code
Journal of the Korea Concrete Institute
J Korea Inst. Struct. Maint. Insp.
Indexed by
Korea Citation Index (KCI)
Main Menu
Main Menu
About Journal
Aims and Scope
Subscription Inquiry
Editorial Board
For Contributors
Instructions For Authors
Ethical Guideline
Crossmark Policy
Submission & Review
Archives
Current Issue
All Issues
Journal Search
Home
All Issues
2019-05
(Vol.23 No.3)
10.11112/jksmi.2019.23.3.43
Journal XML
XML
PDF
INFO
REF
1.
ACI Committee 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, American Concrete Institute.
2.
Ahn, K. L., Jang, S. J., Jang, S. H., Yun, H. D. (2015), Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete, Journal of the Korea Concrete Institute, 27(3), 228-235 (in Korea, with English abstract).
3.
Aoude, H., Cook, W. D., Mitchell, D. (2009), Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete, ACI Structural Journal, 106(3), 349-357.
4.
Aoude, H., Belghiti, M., Cook, W. D., Mitchell, D. (2012), Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups, ACI Structural Journal, 109(3), 359-367.
5.
ASTM C1609 (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), American Society for Testing and Materials.
6.
Banthia, N., Trottier, J. F. (1995), Test Methods for Flexural Toughness Characterization of Fiber Reinforced Concrete: Some Concerns and a Proposition, ACI Materials Journal, 92, 48-57.
7.
Barros, J. A., Figueiras, J. A. (1999), Flexural Behavior of SFRC: Testing and Modeling, Journal of materials in civil engineering, 11(4), 331-339.
8.
Bencardino, F., Rizzuti, L., Spadea, G., Swamy, R. N. (2008), Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression, Journal of Materials in Civil Engineering, 20(3), 255-263.
9.
Carneiro, J. A., Lima, P. R. L., Leite, M. B., Toledo Filho, R. D. (2014), Compressive Stress–Strain Behavior of Steel Fiber Reinforced-Recycled Aggregate Concrete, Cement and concrete composites, 46, 65-72.
10.
Chen, G. M., He, Y. H., Yang, H., Chen, J. F., Guo, Y. C. (2014), Compressive Behavior of Steel Fiber Reinforced Recycled Aggregate Concrete After Exposure to Elevated Temperatures, Construction and Building Materials, 71, 1-15.
11.
Germano, F., Tiberti, G., Plizzari, G. (2016), Experimental Behavior of SFRC Columns Under Uniaxial and Biaxial Cyclic Loads, Composites Part B: Engineering, 85, 76-92.
12.
Jang, S. J., Ahn, K. L., Yun, H. D. (2015), Effects of Aggregate Size and Fiber Volume Fraction on Flextural Properties of Steel Fiber Reinforced Concrete (SFRC), Architectural Institute of Korea, 31(2), 45-54. (in Korea, with English abstract)
13.
Jang, S. J., Jeong, G. Y., Yun, H. D. (2018), Use of Steel Fibers as Transverse Reinforcement in Diagonally Reinforced Coupling Beams with Normal-and High-Strength Concrete, Construction and Building Materials, 187, 1020-1030.
14.
Jang, S. J., Yun, H. D. (2018), Combined Effects of Steel Fiber and Coarse Aggregate Size on the Compressive and Flexural Toughness of High-Strength Concrete, Composite Structures, 185, 203-211.
15.
Jeong, G. Y., Jang, S. J., Kim, Y. C., Yun, H. D. (2018), Effects of Steel Fiber Strength and Aspect Ratio on Mechanical Properties of High-Strength Concrete, Journal of the Korea Concrete Institute, 30(2), 197-205 (in Korea, with English abstract).
16.
Johnston, C. D. (1982), Definition and Measurement of Flexural Toughness Parameters for Fiber Reinforced Concret, Cement, Concrete and Aggregates, 4(2), 53-60.
17.
JSCE-SF5 (1984), Method of Tests for Compressive Strength and Compressive Toughness of Steel Fiber Reinforced Concrete, Japan Society of Civil Engineers.
18.
Köksal, F., Sahin, Y., Sahin, M. (2012), Effect of Steel Fiber Tensile Strength on Mechanical Properties of Steel Fiber Reinforced Concretes, Special Publication, 289, 1-15.
19.
KS F 2403 (2014), Standard Test Method of Making and Curing Concrete Specimens, Korean Standards Association (in Korean).
20.
KS F 2405 (2010), Standard Test Method for Compressive Strength of Concrete, Korean Standards Association (in Korean).
21.
Lee, S. C., Oh, J. H., Cho, J. Y. (2015), Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers, Materials, 8(4), 1442-1458.
22.
Minelli, F., Plizzari, G. A. (2013), On the Effectiveness of Steel Fibers as Shear Reinforcement, ACI Structural Journal, 110(3).
23.
Nataraja, M. C., Dhang, N., Gupta, A. P. (1999), Stress-Strain Curves for Steel-Fiber reinforced Concrete under Compression, Cement and concrete composite, 21(5-6), 383-390.
24.
Nataraja, M. C., Dhang, N., Gupta, A. P. (2000), Toughness Characterization of Steel Fiber-Reinforced Concrete by JSCE Approach, Cement and Concrete Research, 30(4), 593-597.
25.
Ou, Y. C., Tsai, M. S., Liu, K. Y., Chang, K. C. (2011), Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, Journal of Materials in Civil Engineering, 24(2), 207-215.
26.
Sahoo, D. R., Kumar, N. (2015), Monotonic Behavior of Large-Scale SFRC Beams without Stirrups, Engineering Structures, 92, 46-54.
27.
Yazıcı, Ş., İnan, G., Tabak, V. (2007), Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC, Construction and Building Materials, 21(6), 1250-1253.