Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Al-Isawi, A.T., Collins, P.E.F., Cashell, K.A. (2019), Fully Non-Linear Numerical Simulation of a Shaking Table Test of Dynamic Soil-Pile-Structure Interactions in Soft Clay Using ABAQUS, Geo-Congress 2019, American Society of Civil EngineersDOI
2 
Benedetti, D., Carydis, P., Pezzoli, P. (1998), Shaking table tests on 24 simple masonry buildings, Earthquake engineering & structural dynamics, 27(1), 67-90.DOI
3 
Dolce, M., Cardone, D., Ponzo, F.C., Valente, C. (2005), Shaking table tests on reinforced concrete frames without and with passive control systems, Earthquake engineering & structural dynamics, 34(14), 1687-1717.DOI
4 
Dolce, M., Cardone, D., Ponzo, F.C. (2007), Shaking-table tests on reinforced concrete frames with different isolation systems, Earthquake Engineering & Structural Dynamics, 36(5), 573-596.DOI
5 
Fan, W., Yuan, W.C. (2014), Numerical simulation and analytical modeling of pile-supported structures subjected to ship collisions including soil–structure interaction, Ocean engineering, 91, 11-27.DOI
6 
Goktepe, F., Celebi, E., Omid, A.J. (2019), Numerical and experimental study on scaled soil-structure model for small shaking table tests, Soil Dynamics and Earthquake Engineering, 119(), 308-319.DOI
7 
Grange, S., Kotronis, P., Mazars, J. (2009), A macro-element to simulate 3D soil–structure interaction considering plasticity and uplift, International Journal of Solids and Structures, 46(20), 3651-3663.DOI
8 
Haeri, S.M., Kavand, A., Rahmani, I., Torabi, H. (2012), Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing, Soil Dynamics and Earthquake Engineering, 38, 25-45.DOI
9 
Han, J.T., Yoo, M.T., Choi, J.I., Kim, M.M. (2010), A study on the dynamic py curves in soft clay by 1 g shaking table tests, Journal of the Korean Geotechnical Society, 26(8), 67-75.Google Search
10 
Hallquist, J. O. (2000), LS-DYNA Keyword user’s Manual, Livermore Software Technology Corporation, Livermore, Calif, Arp.Google Search
11 
Hokmabadi, A.S., Fatahi, B., Samali, B. (2014), Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations, Computers and Geotechnics, 55, 172-186.DOI
12 
Iai, S. (1989), Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field, Soils and Foundations, 29(1), 105-118.DOI
13 
Ko, S. (2020), Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0, Korea Institute for Structural Maintenance and Inspection, 24(6), 59-66.Google Search
14 
Kagawa, T. (1978), On the similitude in model vibration tests of earth-structures. In Proceedings of the Japan Society of Civil Engineers, Japan Society of Civil Engineers, 1978(275), 69-77.DOI
15 
Kokusho, T., Iwatate, T. (1979), Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounss: Proceedings of the Japan Society of Civil Engineers, 1979(285), 57-67.DOI
16 
Kim, J., Shin, M. (2011), Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station, Korea Institute for Structural Maintenance and Inspection, 15(3), 99-105.DOI
17 
Kim, S., Ahn, K., Kang, H. (2018), A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test, Korea Institute for Structural Maintenance and Inspection, 18(5), 96-106.Google Search
18 
Lee, J., Jung, H., Oh, J., Park, J., Kim, S. (2014), Dynamic behavior of group piles according to pile cap embedded in sandy ground, Journal of the Korean Geoenvironmental Society, 19(10), 35-41.DOI
19 
Lee, W., Yhim, S. (2013), Study on Seismic Performance of RC Column with Super-Flexibility Membrane, Korea Institute for Structural Maintenance and Inspection, 17(5), 1-12.DOI
20 
Ling, H.I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K., Liu, H. (2005), Large-scale shaking table tests on modular-block reinforced soil retaining walls, Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 465-476.DOI
21 
Liu, S., Li, P., Zhang, W., Lu, Z. (2020), Experimental study and numerical simulation on dynamic soil‐structure interaction under earthquake excitations, Soil Dynamics and Earthquake Engineering, 138(), -.DOI
22 
Pitilakis, D., Dietz, M., Wood, D.M., Clouteau, D., Modaressi, A. (2008), Numerical simulation of dynamic soil-structure interaction in shaking table testing, Soil dynamics and earthquake Engineering, 28(6), 453-467.DOI
23 
Qaftan, O.S., Toma-Sabbagh, T., Weekes, L., Augusthus- Nelson, L. (2020), Validation of a finite element modelling approach on soil-foundation-structure interaction of a multi-storey wall-frame structure under dynamic loadings, Soil Dynamics and Earthquake Engineering, 131(106041)DOI
24 
Rayhani, M.H., El Naggar, M.H. (2008), Numerical modeling of seismic response of rigid foundation on soft soil, International Journal of Geomechanics, 8(6), 336-346.DOI
25 
Shin, E.C., Kang, H.H., Kim, T.J., Chae, Y.S., Park, J.J. (2011), Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading, Journal of Korean Geosynthetics Society, 10(3), 53-62.DOI
26 
Shin, E.C., Kang, H.H., Kim, T.J., Chae, Y.S., Park, J.J. (2011), Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading, Journal of Korean Geosynthetics Society, 10(3), 53-62.DOI