Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Surh, H. B., Ryu, T. Y., Park, J. S., Ahn, E. W., Choi, C. S., Koo, J. C., Choi, J. B., Kim, M. K. (2015), Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building, Nuclear Engineering and Design, 292, 283-295.DOI
2 
Choi, S. Y., Choi, Y. H. (2004), Piping failure frequency analysis for the main feedwater system in domestic nuclear power plants, Journal of the Korean Nuclear Society, 36(1), 112-120.URL
3 
Bursi, O. S., Reza, M. S., Abbiati, G., Paolacci, F. (2015), Performance-based earthquake evaluation of a full-scale petrochemical piping system, Journal of Loss Prevention in the Process Industries, 33, 10-22.DOI
4 
Varelis, G. E., Karamanos, S. A., Gresnigt, A. M. (2013), Pipe elbows under strong cyclic loading, Journal of Pressure Vessel Technology, 135(1), 011207DOI
5 
Ravi Kiran, A., Reddy, G. R., Agrawal, M. K., Raj, M., Sajish, S. D. (2019), Ratcheting based seismic performance assessment of a pressurized piping system: Experiments and analysis, International Journal of Pressure Vessels and Piping, 177, 103995DOI
6 
Nakamura, I., Kasahara, N. (2017), Excitation tests on elbow pipe specimens to investigate failure behavior under excessive seismic loads, Journal of Pressure Vessel Technology, 139(6), 061802DOI
7 
Takahashi, K., Ando, K., Matsuo, K., Urabe, Y. (2014), Estimation of low-cycle fatigue life of elbow pipes considering the multi-axial stress effect, Journal of Pressure Vessel Technology, 136(4), 041405DOI
8 
Kim, S. W., Jeon, B. G., Hahm, D. G., Kim, M. K. (2020), Ratcheting fatigue failure of a carbon steel pipe tee in a nuclear power plant using the deformation angle, Engineering Failure Analysis, 114, 104595DOI
9 
Hasegawa, K., Miyazaki, K., Nakamura, I. (2008), Failure mode and failure strengths for wall thinning straight pipes and elbows subjected to seismic loading, Journal of Pressure Vessel Technology, 130(1), 011404DOI
10 
Watakabe, T., Tsukimori, K., Kitamura, S., Morishita, M. (2016), Ultimate strength of a thin wall elbow for sodium cooled fast reactors under seismic loads, Journal of Pressure Vessel Technology, 138(2), 021801DOI
11 
Wang, Z., Pedroni, N., Zentner, I., Zio, E. (2018), Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment, Engineering Structures, 162, 213-225.DOI
12 
Ma, Q., Kwon, O. S., Kwon, T. H., Choun, Y. S. (2020), Influence of frequency content of ground motions on seismic fragility of equipment in nuclear power plant, Engineering Structures, 224, 111220DOI
13 
Koo, G. H., Kwag, S. Y., Nam, H. S. (2021), Study on inelastic strain-based seismic fragility analysis for nuclear metal components, Energies, 14(11), 3269DOI
14 
Udagawa, M., Li, Y., Nishida, A., Nakamura, I. (2018), Failure behavior analyses of piping system under dynamic seismic loading, International Journal of Pressure Vessels and Piping, 167, 2-10.DOI
15 
Harun, M. F., Mohammmad, R., Kotousov, A. (2020), Low cycle fatigue behavior of elbows with local wall thinning, Metals, 10(2), 260DOI
16 
Castiglioni, C. A., Pucinotti, R. (2009), Failure criteria and cumulative damage models for steel components under cyclic loading, Journal of Constructional Steel Research, 65(4), 751-765.DOI
17 
Kim, S. W., Yun, D. W., Jeon, B. G., Kim, S. D. (2021), Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(1), 112-119.DOI
18 
Krawinkler, H. (1987), Performance assessment of steel components, Earthquake spectra, 3(1), 27-41.DOI
19 
Gosain, N. K., Brown, R. H., Jirsa, J. O. (1977), Shear requirements for load reversals on RC members, Journal of the Structural Division, 103(7), 1461-1476.DOI
20 
Darwin, D., Nmai, C. K. (1986), Energy dissipation in RC beams under cyclic load, Journal of Structural Engineering, 112(8), 1829-1846.URL
21 
Castiglioni, C. A. (1999), Failure criteria and cumulative damage models for steel components under low-cycle fatigue, In Proceedings of 17th California Teachers Association Conference, NapoliGoogle Search
22 
Park, Y. J., Ang, A. H. S. (1985), Mechanistic seismic damage model for reinforced concrete, Journal of Structural Engineering, 111(4), 722-739.URL
23 
Park, Y. J., Ang, A. H. S., Wen, Y. K. (1987), Damage-limiting aseismic design of buildings, Earthquake Spectra, 3(1), 1-26.DOI
24 
Banon, H., Biggs, J. M., Irvine, H. M. (1981), Seismic damage in reinforced concrete frames, Journal of the Structural Division, 107(9), 1719-1729.DOI
25 
Banon, H., Veneziano, D. (1982), Seismic safety of reinforced concrete members and structures, Earthquake Engineering & Structural Dynamics, 10(2), 179-193.DOI
26 
American Society of Mechanical Engineers, (2004), ASME Boiler and Pressure Vessel Code, Section VIII, American Society Mechanical Engineers, New York, USA.Google Search