Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Lee, M. J., and Kwak, H. G. (2021), Numerical simulations of blast response for SFRC slabs using an orthotropic model, Engineering Structures, 238, 112150.DOI
2 
Yin, H., and Ouyang, Y. (2022), Experimental and Numerical Study on Steel Fiber Concrete under Blast Loading, Buildings, 12(2), 2119.DOI
3 
Lee, J. Y., Shin, H. O., Min, K. H., and Yoon, Y. S. (2013), Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 17(3), 1-9 (in Korean, with English abstract).DOI
4 
Livermore Software Technology (LST). (2021), LS-DYNA Keyword User’s Manual, Volumn 2.URL
5 
Lee, K. H., Kim, J. M., Kim, J. H., Lee, S. H., and Kang, S. K. (2022), Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 26(5), 151-160 (in Korean, with English abstract).URL
6 
Lin, X. (2018), Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect, Construction and Building Materials, 176, 371-382.DOI
7 
Lee, M. J., Kwak, H. G., and Part, G. K. (2021), An improved calibration method of the K&C model for modeling steel-fiber reinforced concrete, Composite Structures, 269, 114010.DOI
8 
Lee, S. C., Oh, J. H., and Cho, J. Y. (2015), Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers, Materials, 8(4), 1442-1458.DOI
9 
Gholampour, A., and Ozbakkaloglu, T. (2018), Fiber-reinforced concrete containing ultra high-strength micro steel fibers under active confinement, Construction and Building Materials, 187, 299-306.DOI
10 
Abbass, W., Khan, M. I., and Mourad, S. (2018), Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete, Construction and Building Materials, 168, 556-569DOI
11 
Ou, Y. C., Tsai, M. S., Liu, K. Y., and Chang, K. C. (2012), Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, Journal of Materials in Civil Engineering, 24(2), 207-215DOI
12 
Shafieifar, M., Farzad, M., and Azizinamini, A. (2017), Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC), Construction and Building Materials, 156, 402-411.DOI
13 
Chern, J. C., Yang, H. J., and Chen, H. W. (1992), Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading, ACI Materials Journal, 89(1), 32-40.URL
14 
Babanajad, S. K., Farnam, Y., and Sheckrchi, M. (2012), Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume, Construction and Building Materials, 29, 215-229DOI
15 
Yoo, D. Y., Yoon, Y. S., and Banthina, N. (2015), Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate, Cement and Concrete Composites, 64, 84-92.DOI
16 
Dwarakanath, H. V., and Nagaraj, T. S. (1991), Comparative Study of Predictions of Flexural Strength of Steel Fiber Concrete, ACI Structural Journal, 88(6), 714-720.URL
17 
Lu, X., and Hsu, C. T. T. (2006), Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression, Cement and Concrete Research, 36, 1679-1685.DOI
18 
Ren G. M., Wu, H., Liu, Q. F., and Gong, Z. M. (2016), Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses, Construction and Building Materials, 113, 1-14.DOI
19 
Meng, K., Xu, L., and Chi, Y. (2021), Experimental investigation on the mechanical behavior of hybrid steel-polypropylene fiber reinforced concrete under conventional triaxial cyclic compression, Construction and Building Materials, 291, 123262.DOI
20 
Chi, Y., Xu, L., Mei, G., Hu, N., and Su, J. (2014), A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression, Composite Structures, 109, 31-40.DOI
21 
Xu, J., and Lu, Y. (2016), Analytical and Finite Element Concrete Material Models: Comparison of Blast Response Analysis of One Way Slabs, American Concrete Institute(ACI), 3.1-3.22.URL
22 
Aoude, H., Cook, W. D., and Mitchell, D. (2009), Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete, ACI Structural Journal, 106(3), 349-357.URL
23 
Nataraja, M. C., Dhang, N., and Gupta, A. P. (1999), Stress-strain curves for steel-fiber reinforced concrete under compression, Cement & Concrete Composites, 21(5-6), 383-390.DOI
24 
Jang, S. J., and Yun, H. D. (2018) Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete, Composite Structures, 185, 203-211.DOI
25 
Bencardino, F., Rizzuti, L., Spadea, G., and Swamy, N. (2008), Stress-Strain Behavior of Steel Fiber-Reinforced Concrete in Compression, Journal of Materials in Civil Engineering, 20(3), 255-263.DOI
26 
Jo, B. W., Shon, Y. H., and Kim, Y. J. (2001) The Evalution of Elastic Modulus for Steel Fiber Reinforced Concrete, Russian Journal of Nondestructive Testing, 37(2), 152-161.DOI
27 
Mansur, M. A., Chin, M. S., and Wee, T. H. (1999), Stress-Strain Relationship of High-Strength Fiber Concrete in Compression, Journal of Materials in Civil Engineering, 11(1), 21-29.DOI
28 
Mardalizad, A., Caruso, M., Manes, A., and Giglio, M. (2019), Investigation of mechanical behavior of a quasi-brittle material using Karagozian and Case Concrete (KCC) model, Journal of Rock Mechanics and Geotechnical Engineering, 11(6), 1119-1137.DOI
29 
Yang, S., Kong, X., Wu, H., Fang, Q., and Xiang, H. (2021), Constitutive modeling of UHPCC material under impact and blast loadings, International Journal of Impact Engineering, 153, 103860.DOI
30 
Xu, S., Wu, P., and Wu, C. (2020), Calibration of KCC concrete model for UHPC against low-velocity impact, International Journal of Impact Engineering, 144, 103648.DOI
31 
Su, Q., Wu, H., and Fang, Q. (2022), Calibration of KCC model for UHPC under impact and blast loadings, Cement and Concrete Composites, 127, 104401.DOI
32 
Dilger, W. H., Koch, R., and Kowalczyk, R. (1984), Ductility of Plain Confined Concrete Under Different Strain Rates, ACI Journal, 81(1), 73-81.URL
33 
Low, T. S., and Zhao, P. J. (2004), Impact Response of Steel Fiber-Reinforced Concrete Using a Split Hopkinson Presuure Bar, Journal of Materials in Civil Engineering, 16(1), 54-59.DOI
34 
Zhang, L., and Mindess, S. (2011), Dynamic Compressive Toughness of High Strength Fiber Reinforced Concrete, ACI Symposium Publication, 281, 1-21.URL
35 
Thomas, R. J., and Sorenson, A. D. (2017), Review of strain rate effects for UHPC in tension, Construction and Building Materials, 153, 846-856.DOI
36 
Malvar, L. J. (1998), Review of Static and Dynamic Properties of Steel Reinforcing Bars, ACI Materials Journal, 95(6), 609-616.URL
37 
Burrell, R. P., Aoude, H., and Saatcioglu, M. (2015), Response of SFRC Columns under Blast Loads, Journal of Structural Engineering, 141(9), 04014209.DOI
38 
Korean Occupational Safety Health Agency. (2012). KOSHA GUIDE D-65-2018, KOSHA (in Korean).URL