Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
American Concrete Institute (2003), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-03, Farmington Hills, Michigan, USA.URL
2 
American Concrete Institute (2012), Guide test methods for fiber-reinforced polymer, ACI 440.3R-12, Farmington Hills, Michigan, USA.URL
3 
Bischoff, P. H. (2001), Effects of shrinkage on tension stiffening and cracking in reinforced concrete, Canadian Journal of Civil Engineering, 28(3), 363-374.DOI
4 
Canadian Standards Association (CSA). (2010), “Specification for fibre-reinforced polymers.” CAN/CSA-S807, Rexdale, Ontario, Canada.URL
5 
Canadian Standards Association (CSA). (2012), “Design and construction of building structures with fibre-reinforced polymers.” CAN/CSA S806-12, Rexdale, Ontario, Canada.URL
6 
Fergani, H., Di Benedetti, M., Oller, C. M., Lynsdale, C., and Guadagnini, M. (2018), Long-term performance of GFRP bars in concrete elements under sustained load and environmental actions, Composite Structures, 190, 20-31.DOI
7 
Gribniak, V., Kaklauskas, G., Torres, L., Daniunas, A., Timinskas, E., and Gudonis, E. (2013), Comparative analysis of deformations and tension-stiffening in concrete beams reinforced with GFRP or steel bars and fibers, Composites Part B: Engineering, 50, 158-170.DOI
8 
Ha, S. (2005). Direct Tensile Test of GFRP Bar Reinforced Concrete Prisms. In Proceedings of the Korea Concrete Institute Conference (pp. 323-326). Korea Concrete Institute (in Korean).URL
9 
Jang, N. S., Kim, Y. H., and Oh, H. S. (2021), Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(5), 173-181.DOI
10 
Jang, N. S., Kim, Y. H., and Oh, H. S. (2023), Comparison of the Prediction of Effective Moment of Inertia of FRP Rebar- Reinforced Concrete by an Optimization Algorithm, Materials, 16(2), 621 (in Korean).DOI
11 
Kaklauskas, G., Tamulenas, V., Bado, M. F., and Bacinskas, D. (2018), Shrinkage-free tension stiffening law for various concrete grades, Construction and Building Materials, 189, 736-744.DOI
12 
Kharal, Z., and Sheikh, S. (2017), Tension Stiffening and Cracking Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete, ACI Structural Journal, 114(2).URL
13 
Nayal, R., and Rasheed, H. A. (2006), Tension stiffening model for concrete beams reinforced with steel and FRP bars, Journal of Materials in Civil Engineering, 18(6), 831-841.DOI
14 
Oh, H., Kim, Y., and Jang, N. (2019), An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition. Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 51-59 (in Korean).DOI
15 
Rimkus, A., Barros, J. A., Gribniak, V., and Rezazadeh, M. (2019), Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systems, Composite Structures, 220, 273-288.DOI
16 
Sim, J. S., Oh, H. S., Ju, M. K., and Lim, J. H. (2008), New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar, Journal of the Korea Concrete Institute, 20(2), 185-191 (in Korean).DOI
17 
Son, B. L., Kim, M. S., Kim, C. H., and Jang, H. S. (2013), Bond characteristic between lightweight concrete and GFRP bar. Journal of the Korea Institute for Structural Maintenance and Inspection, 17(6), 112-121 (in Korean).DOI
18 
Sooriyaarachchi, H., Pilakoutas, K., and Byars, E. (2005), Tension stiffening behavior of GFRP-reinforced concrete, Special Publication, 230, 975-990.URL
19 
Taerwe, L., and Matthys, S. (2013), Fib model code for concrete structures 2010.URL
20 
Vilanova, I., Torres, L., Baena, M., Kaklauskas, G., and Gribniak, V. (2014), Experimental study of tension stiffening in GFRP RC tensile members under sustained load. Engineering structures, 79, 390-400.DOI