Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Ahari, R. S., Erdem, T. K., and Ramyar, K. (2015), Time-dependent rheological characteristics of self-consolidating concrete containing various mineral admixtures, Construction and Building Materials, 88, 134-142.DOI
2 
Coe Jr, J. R., and Godfrey, T. B. (1944), Viscosity of water, Journal of Applied Physics, 15(8), 625-626.DOI
3 
De Larrard, F.(1999), Concrete mixture proportioning: a scientific approach. CRC Press.URL
4 
De Larrard, F., and Sedran, T. (1994), Optimization of ultra- high-performance concrete by the use of a packing model. Cement and Concrete Research, 24(6), 997-1009.DOI
5 
Ferraris, C. F., and de Larrard, F. (1998), Modified slump test to measure rheological parameters of fresh concrete, Cement, Concrete, and Aggregates, 20(2), 241-247.DOI
6 
Flatt, R. J., and Bowen, P. (2006), Yodel: a yield stress model for suspensions, Journal of the American Ceramic Society, 89(4), 1244-1256.DOI
7 
Flatt, R. J., and Bowen, P. (2007), Yield stress of multimodal powder suspensions: an extension of the YODEL (Yield Stress mODEL), Journal of the American Ceramic Society, 90(4), 1038-1044.DOI
8 
Jouenne, S., and Levache, B. (2020), Universal viscosifying behavior of acrylamide-based polymers used in enhanced oil recovery, Journal of Rheology, 64(5), 1295-1313.DOI
9 
Khayat, K. H., Meng, W., Vallurupalli, K., and Teng, L. (2019), Rheological properties of ultra-high-performance concrete—An overview, Cement and Concrete Research, 124, 105828.DOI
10 
Ko, Y. K., Kim, C. H., Hwang, J. W., and Yi, S. T.(2015), Experimental Study on Lateral Pressure Characteristics of a Formwork for High-Flowable and High-Strength Concrete, Journal of the Korea Institute of Structural Maintenance and Inspection, 19(3), 130-138.DOI
11 
Krieger, I. M., and Dougherty, T. J. (1959), A mechanism for non‐Newtonian flow in suspensions of rigid spheres, Transactions of the Society of Rheology, 3(1), 137-152.DOI
12 
Martinie, L., Rossi, P., and Roussel, N. (2010), Rheology of fiber reinforced cementitious materials: classification and prediction, Cement and Concrete Research, 40(2), 226-234.DOI
13 
Oh, S. W., Hong, G.T., and Choi, S,C (2021), Literature Review on Rheological Properties and Required Performances of 3D Printable Cementitious Materials, Journal of the Korean Recycled Construction Resources Institute, 9(1), 41-49.DOI
14 
Rajadurai, R. S., and Kang, S. T. (2021), Influence of inter-particle distances on the rheological properties of cementitious suspensions, Materials, 14(24), 7869.DOI
15 
Rajagopalan, S. R., Lee, B. Y., and Kang, S. T. (2022), Prediction of the Rheological Properties of Fresh Cementitious Suspensions Considering Microstructural Parameters, Materials, 15(20), 7044.DOI
16 
Roussel, N., Lemaître, A., Flatt, R. J., and Coussot, P. (2010), Steady state flow of cement suspensions: A micromechanical state of the art, Cement and Concrete Research, 40(1), 77-84.DOI
17 
Seo, E. A., Lee, H. J., and Yang, K. H. (2022), Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing, Journal of the Korea Institute of Structural Maintenance and Inspection, 26(4), 73-80.URL
18 
Suzuki, M., and Oshima, T. (1983), Estimation of the co-ordination number in a multi-component mixture of spheres, Powder Technology, 35(2), 159-166.DOI
19 
Wallevik, J. E. (2006), Relationship between the Bingham parameters and slump, Cement and Concrete Research, 36(7), 1214-1221.DOI
20 
Ye, H., Gao, X., and Zhang, L. (2019), Influence of time-dependent rheological properties on distinct-layer casting of self-compacting concrete, Construction and Building Materials, 199, 214-224.DOI
21 
Zhou, Z., Solomon, M. J., Scales, P. J., and Boger, D. V. (1999), The yield stress of concentrated flocculated suspensions of size distributed particles, Journal of Rheology, 43(3), 651-671.DOI