Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Chen, Y., He, S., Gan, Y., Çopuroğlu, O., Veer, F., and Schlangen, E. (2022), A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing, Journal of Building Engineering, 45, 103599.DOI
2 
Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G., and Van Tittelboom, K. (2019), Microstructural characterization of 3D printed cementitious materials, Materials, 12(18), 2993.DOI
3 
Kruger, J., du Plessis, A., and van Zijl, G. (2021), An investigation into the porosity of extrusion-based 3D printed concrete, Additive Manufacturing, 37, 101740.DOI
4 
Sikora, P., Techman, M., Federowicz, K., El-Khayatt, A. M., Saudi, H. A., Abd Elrahman, M., Hoffmann, M., Stephan, D., and Chung, S. Y. (2022), Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens, Case Studies in Construction Materials, 17, e01320.DOI
5 
Banijamali, K., Vosoughi, P., Arce, G., Noorvand, H., Lamendola, J., Hassan, M., and Kazemian, A. (2024), Automated strength monitoring of 3D printed structures via embedded sensors, Automation in Construction, 166, 105681.DOI
6 
Moelich, G. M., Kruger, J., and Combrinck, R. (2020), Plastic shrinkage cracking in 3D printed concrete, Composites Part B: Engineering, 200, 108313.DOI
7 
Lee, S. S., Song, H. Y., and Lee, J. H. (2008), An experimental study on the early strength development properties of concrete according to curing condition and used materials, Journal of the Korea Concrete Institute, 20(6), 721-729 (in Korean).DOI
8 
Lee, H. J., and Yim, H. J. (2017), Setting time evaluation of concrete using electrical resistivity measurement, Journal of the Korea Concrete Institute, 29(4), 361-369.DOI
9 
Zhang, C., Nerella, V. N., Krishna, A., Wang, S., Zhang, Y., Mechtcherine, V., and Banthia, N. (2021), Mix design concepts for 3D printable concrete: A review, Cement and Concrete Composites, 122, 104155.DOI
10 
Zhang, C., Hou, Z., Chen, C., Zhang, Y., Mechtcherine, V., and Sun, Z. (2019), Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content, Cement and Concrete Composites, 104, 103406.DOI
11 
Yim, H. J., Bae, Y. H., and Jun, Y. (2021), Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements, Construction and Building Materials, 303, 124508.DOI
12 
Ahn, Y., Jun, Y., and Yim, H. J. (2022), Setting Time Evaluation on Cement Paste with Retarder Using Non-Destructive Measurements, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(4), 48-56 (in Korean).DOI
13 
Trtnik, G., Turk, G., Kavčič, F., and Bosiljkov, V. B. (2008), Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste, Cement and Concrete Research, 38(11), 1336-1342.DOI
14 
Zhang, J., Qin, L., and Li, Z. (2009), Hydration monitoring of cement-based materials with resistivity and ultrasonic methods, Materials and Structures, 42, 15-24.DOI
15 
Lee, H. K., and Lee, K. M. (2002), Setting assessment of high strength concrete using the ultrasonic pulse velocity monitoring, Journal of the Korea Concrete Institute, 14(6), 973-981 (in Korean).DOI
16 
Wolfs, R. J., Bos, F. P., and Salet, T. A. (2018), Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete, Construction and Building Materials, 181, 447-454.DOI
17 
ASTM C403/C403M, Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, ASTM International, West Conshohocken, PA, 2016.URL
18 
Azarsa, P., and Gupta, R. (2017), Electrical resistivity of concrete for durability evaluation: a review, Advances in Materials Science and Engineering, 2017(1), 8453095.DOI
19 
Sengul, O., and Gjørv, O. E. (2008), Electrical resistivity measurements for quality control during concrete construction, ACI Materials Journal, 105(6), 541.URL
20 
Layssi, H., Ghods, P., Alizadeh, A. R., and Salehi, M. (2015), Electrical resistivity of concrete, Concrete International, 37(5), 41-46.URL
21 
Salehi, M., Ghods, P., and Burkan Isgor, O. (2016), Numerical investigation of the role of embedded reinforcement mesh on electrical resistivity measurements of concrete using the Wenner probe technique, Materials and Structures, 49, 301-316.DOI
22 
ASTM C109/C109M, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2020.URL
23 
ASTM C293/C293M-16, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading), ASTM International, West Conshohocken, PA, 2016.URL
24 
Yim, H. J., Lee, H., and Kim, J. H. (2017), Evaluation of mortar setting time by using electrical resistivity measurements, Construction and Building Materials, 146, 679-686.DOI
25 
Yim, H. J., Kim, J. H., Park, S. J., and Kwak, H. G. (2012), Characterization of thermally damaged concrete using a nonlinear ultrasonic method, Cement and Concrete Research, 42(11), 1438-1446.DOI
26 
Luo, Z., Guan, H., and Zhang, X. (2019), The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations, Journal of Hydrology, 578, 124022.DOI
27 
Ma, L., Zhang, Q., Jia, Z., Liu, C., Deng, Z., and Zhang, Y. (2022), Effect of drying environment on mechanical properties, internal RH and pore structure of 3D printed concrete, Construction and Building Materials, 315, 125731.DOI
28 
Yu, S., Xia, M., Sanjayan, J., Yang, L., Xiao, J., and Du, H. (2021), Microstructural characterization of 3D printed concrete, Journal of Building Engineering, 44, 102948.DOI