Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Chung, J., Lee, G., Kim, J.-H., and Choi, J. (2020), A comparative analysis of the classification system for three-dimensional concrete printers, Korean Journal of Civil Engineering and Materials, 21(2), 3-14 (In Korean, with English abstract).DOI
2 
Panda, B., and Tan, M. J. (2018), Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing, Ceramics International, 44(9), 10258-10265.DOI
3 
Mechtcherine, V., Nerella, V. N., Will, F., Näther, M., Otto, J., and Krause, M. (2019), Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing, Automation in Construction, 107, 1-16.DOI
4 
Ma, G., Wang, L., and Yang, J. (2018), State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction, Science China Technological Sciences, 61(4), 475-495.DOI
5 
Ha, S. J., Bang, J. S., and Yim, H. J. (2025), Non-destructive monitoring methods for evaluation of setting and hardening on 3D printed concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 29(2), 43-51 (In Korean, with English abstract).DOI
6 
Wangler, T., Roussel, N., Bos, F. P., Salet, T. A. M., and Flatt, R. J. (2019), Digital concrete: A review, Cement and Concrete Research, 123, 105780. https://doi.org/10.1016/j.cemconres.2019.105780DOI
7 
Bos, F., Wolfs, R. J. M., Ahmed, Z. Y., and Salet, T. A. M. (2016), Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing, Virtual and Physical Prototyping, 11(3), 209-225.DOI
8 
Yao, Y., Zhang, J., Sun, Y., Pi, Y., Wang, J., and Lu, C. (2024), Mechanical properties and failure mechanism of 3D printing ultra-high performance concrete, Construction and Building Materials, 447, 138108.DOI
9 
Jia, Z., Kong, L., Jia, L., Ma, L., Chen, Y., and Zhang, Y. (2024), Printability and mechanical properties of 3D printing ultra-high performance concrete incorporating limestone powder, Construction and Building Materials, 426, 136195.DOI
10 
Zhang, C., Deng, Z., Chen, C., Zhang, Y., Mechtcherine, V., and Sun, Z. (2022), Predicting the static yield stress of 3D printable concrete based on flowability of paste and thickness of excess paste layer, Cement and Concrete Composites, 129, 1-12.DOI
11 
Mohan, M. K., Rahul, A. V., Van Tittelboom, K., and De Schutter, G. (2021), Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content, Cement and Concrete Research, 139, 1-11.DOI
12 
Jayathilakage, R., Rajeev, P., and Sanjayan, J. G. (2020(a)), Yield stress criteria to assess the buildability of 3D concrete printing, Construction and Building Materials, 240, 117989.DOI
13 
Jeong, H., Han, S.-J., Choi, S.-H., Lee, Y. J., Yi, S. T., and Kim, K. S. (2019), Rheological property criteria for buildable 3D printing concrete, Materials, 12(4), 657.DOI
14 
Jayathilakage, R., Rajeev, P., and Sanjayan, J. (2022(b)), Rheometry for concrete 3D printing: A review and an experimental comparison, Buildings, 12(8), 1-46.DOI
15 
Roussel, N., Buswell, R., Ducoulombier, N., Ivanova, I., Kolawole, J. T., Lowke, D., Mechtcherine, V., Mesnil, R., Perrot, A., Pott, U., Reiter, L., Stephan, D., Wangler, T., Wolfs, R., and Zuo, W. (2022), Assessing the fresh properties of printable cement-based materials: High potential tests for quality control, Cement and Concrete Research, 161, 106836.DOI
16 
Tay, Y. W. D., Qian, Y., and Tan, M. J. (2020), Printability region for 3D concrete printing using slump and slump flow test, Composites Part B: Engineering, 174, 106968.DOI
17 
Roussel, N. (2018), Rheological requirements for printable concretes, Cement and Concrete Research, 112, 76-85.DOI
18 
White, C., and Lees, J. M. (2023), Yield stress prediction from 3D reconstruction of fresh concrete slump, Cement and Concrete Research, 174, 107331.DOI
19 
Charrier, M., and Ouellet-Plamondon, C. M. (2022), Artificial neural network for the prediction of the fresh properties of cementitious materials, Cement and Concrete Research, 156, 106761.DOI
20 
Gao, H., Jin, L., Chen, Y., Chen, Q., Liu, X., and Yu, Q. (2024), Rheological behavior of 3D printed concrete: Influential factors and printability prediction scheme, Journal of Building Engineering, 91, 109626.DOI
21 
Iliopoulos, S. N., El Khattabi, Y., and Aggelis, D. G. (2016), Towards the establishment of a continuous nondestructive monitoring technique for fresh concrete, Journal of Nondestructive Evaluation, 35, Article 37.DOI
22 
Ahn, E., and Shin, M. (2020), Effects of moisture content in concrete on diffuse ultrasound, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(1), 142-147.DOI
23 
Popovics, S., Silva-Rodriguez, R., Popovics, J. S., and Martucci, V. (1994), Behavior of ultrasonic pulses in fresh concrete, Symposium Paper, 143, 207-226.DOI
24 
Basu, S., and Sasmal, S. (2024), Ultrasonic wave diffusion-based investigations on microstructural development in multi-scale cementitious materials, Construction and Building Materials, 442, 137626.DOI
25 
Owino, J. O., and Jacobs, L. J. (1999), Attenuation measurements in cement-based materials using laser ultrasonics, Journal of Engineering Mechanics, 125(6), 637-647.DOI
26 
Arunothayan, A. R., Nematollahi, B., Ranade, R., Bong, S. H., Sanjayan, J. G., and Khayat, K. H. (2021), Fiber orientation effects on ultra-high performance concrete formed by 3D printing, Cement and Concrete Research, 143, 106384.DOI
27 
Yang, Y., Wu, C., Liu, Z., Li, J., Yang, T., and Jiang, X. (2022), Characteristics of 3D-printing ultra-high performance fibre-reinforced concrete under impact loading, International Journal of Impact Engineering, 164, 104205.DOI
28 
Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., and Thorpe, T. (2012), Mix design and fresh properties for high-performance printing concrete, Materials and Structures, 45(8), 1221-1232.DOI
29 
Lee, Y. J., Han, S. J., Jeong, H. J., Kim, J. H., and Kim, K. S. (2020), Material characteristics of rapid prototyping concrete and member behavior, Journal of the Korea Concrete Institute, 32(1), 85-93.DOI
30 
Li, P. P., Yu, Q. L., and Brouwers, H. J. H. (2017), Effect of PCE-type superplasticizer on early-age behaviour of ultra-high performance concrete (UHPC), Construction and Building Materials, 153, 740-750.DOI
31 
Liu, J., Wang, K., Zhang, Q., Han, F., Sha, J., and Liu, J. (2017), Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio, Construction and Building Materials, 149, 359-366.DOI
32 
Russell, S. J., and Norvig, P. (2010), Artificial Intelligence: A Modern Approach, 3rd ed., Pearson Education, Upper Saddle River, NJ.URL
33 
Hornik, K., Stinchcombe, M., and White, H. (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2(5), 359-366.DOI
34 
Ghafari, E., Bandarabad, M., Costa, H., and Júlio, E. (2015), Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model, Journal of Materials in Civil Engineering, 27(11).DOI