Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
Do, K. Y., and Yoon, S. W. (2014), Analysis of Natural Frequency According to Span of Foot-bridges, Journal of Korean Society of Steel Construction, 26(5), 375-383 (in Korean).DOI
2 
Yoo, M. S., Kim, J. H., and Na, S. I. (2022), Effective Vibration Reduction of Footbridges Using Tuned Mass Damper(TMD), 34(5), 24-31 (in Korean).URL
3 
Šurdilović, M. S., Živković, S., and Milošević, M. (2022), Modelling of pedestrian-induced load in serviceability limit state analysis of footbridges, Architecture and Civil Engineering, Facta Universitatis, 20(1), 23-34.DOI
4 
Dallard, P., Fitzpatrick, A. J., Flint, A., Le Bourva, S., Low, A., RidsdillSmith, R. M., and Willford, M. (2001), The London Millennium Footbridge, Structural Engineer, 79(22), 17-21.URL
5 
Reiher, H., and Meister, F. J. (1946), The effect of vibration on people (translated from German, originally published in 1931), Forsch Gebeite Ingenieurwes, 2(1931), 381-386.URL
6 
Chen, D., Huang, S., and Wang, Z. (2021), A Theory of pedestrian-induced footbridge vibration comfortability based on sensitivity model, Advances in Bridge Engineering, 2(1), 24.DOI
7 
Schweizer, M., Fina, M., Wagner, W., Kasic, S., and Freitag, S. (2024), Uncertain pedestrian load modeling for structural vibration assessment in footbridge design, Engineering Structures, Elsevier, 311, 118070.DOI
8 
Fouli, M., and Camara, A. (2024), Human-structure interaction effects on lightweight footbridges with tuned mass dampers, Structures, Elsevier, 62, 106263.DOI
9 
Zhen, B., Lu, S., Ouyang, L., and Yuan, W. (2024), Assessment of Vertical Dynamic Responses in a Cracked Bridge under a Pedestrian-Induced Load, Buildings, MDPI, 14(9), 2997.DOI
10 
Jeon, G. Y., Kim, G. Y., and Yoon, H. C. (2024), Vision-Based Displacement Measurement of Pedestrian Suspension Bridges, Journal of the Korean Society of Hazard Mitigation, 24.3, 157-166.DOI
11 
Buoli, E., Bassoli, E., Varzaneh, G. E., Ponsi, F., and Vincenzi, L. (2024), Vision-based dynamic monitoring of a steel footbridge, Journal of Physics: Conference Series, 2647(12), 122010.DOI
12 
Wang, F., Qin, W., Shimasaki, K., Ishii, I., and Matsuda, H. (2024), HFR-Video-Based 3-D Software Sensor for Bridge Displacement Monitoring, IEEE Sensors Letters, 8(10), 1-4.DOI
13 
Xu, Y., Brownjohn, J., and Kong, D. (2018), A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge, Structural Control and Health Monitoring, 25(5), e2155.DOI
14 
Fradelos, Y., Thalla, O., Biliani, I., and Stiros, S. (2020), Study of lateral displacements and the natural frequency of a pedestrian bridge using low-cost cameras, Sensors, 20(11), 3217.DOI
15 
Zhang, Z. (2002), A flexible new technique for camera calibration, IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330-1334.DOI
16 
Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006), A toolbox for easily calibrating omnidirectional cameras, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 5695-5701.DOI
17 
Wu, H. Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., and Freeman, W. (2012), Eulerian video magnification for revealing subtle changes in the world, ACM Transactions on Graphics (TOG), 31(4), 1-8.DOI
18 
Lucas, B. D., and Kanade, T. (1981), An iterative image registration technique with an application to stereo vision, IJCAI’81: 7th international joint conference on Artificial intelligence, 2, 674-679.URL
19 
Wang, Z., and Yang, X. (2018), Moving target detection and tracking based on Pyramid Lucas-Kanade optical flow, 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 66-69.DOI