Mobile QR Code QR CODE

Journal of the Korea Concrete Institute

J Korea Inst. Struct. Maint. Insp.
  • Indexed by
  • Korea Citation Index (KCI)

References

1 
ACI Committee 318 (2025), Building Code Requirements for Structural Concrete (ACI 318R-25). Farmington Hills, MI; American Concrete Institute (ACI)URL
2 
Coleman, Z. W., Jacques, E., and Roberts-Wollmann, C. L. (2025), Strength and Behavior of Unconfined Noncontact Hooked Bar Lap Splices. Journal of Bridge Engineering, 30(2), 04024110.DOI
3 
Choi, S. D., Kim, M. S., Kim, K. S., Hong, S. Y., and Han, S. J. (2020), Experimental Study on Structural Behavior of Inverted Multi-Tee Precast Slabs Manufactured by Slipformer. Korea Institute for Structural Maintenance and Inspection, 24(3), 80-86 (in Korean).DOI
4 
DeVries, R. A. (2015), Load distribution between bond and end-bearing for hooked and headed bars in concrete. AEI 2015. 269-278.DOI
5 
E. Hognestad (1951), A Study of Bending and Axial Load in Reinforced Concrete Members, Bulletin No. 399, University of Illinois Engineering Experiment Station, Urbana, IL.DOI
6 
Han, S. M., and Chun, S. C. (2024), Experimental Evaluation on the Reinforcement Details of Splice Strength of Hooked Bars. Journal of the Korea Concrete Institute, 36(6), 573-581 (in Korean). 10.4334/JKCI.2024.36.6.573DOI
7 
Son, D. H., Bae, B. I., Lee, J., and Choi, C. S. (2024), Shear strength of steel fiber reinforced concrete exterior beam-column joints with various anchorage details under cyclic loading. Structures, 61, 105940.DOI
8 
Jahromi, A. J., and Azizinamini, A. (2019), Investigation of longitudinal closure joint using 90 hooked bars in accelerated bridge construction (No. ABC-UTC-2013-C1-FIU05-Final).URL
9 
Jirsa, J. O., and Marques, J. L. (1972), A study of hooked bar anchorages in beam-column joints. Department of Civil Engineering, Structures Research Laboratory, University of Texas at Austin.DOI
10 
Korean Agency for Technology and Standard. (KATS). (2017), Test Pieces for Tensile Test for Metallic Materials, KS B 0801 (in Korean)URL
11 
Method of Tensile Test for Metallic Materials, KS B 0802 (in Korean)URL
12 
Standard Test Method for Making and Curing Concrete Specimens, KS F 2403 (in Korean)URL
13 
Standard Test Method for Compressive Strength of Concrete, KS F 2405 (in Korean)URL
14 
Standard Test Method for Tensile Splitting Strength of Concrete, KS F 2423 (in Korean)URL
15 
Korea Design Standard(KDS) Concrete Design Code 14 20, KDS 14 20 (in Korean)URL
16 
Orangun, C. O., Jirsa, J. O., and Breen, J. E. (1975), The strength of anchor bars: a reevaluation of test data on development length and splices (No. FHWA-RD-75-S0422 Final Rpt.).URL
17 
Sperry, J., Yasso, S., Searle, N., DeRubeis, M., Darwin, D., O’Reilly, M., ... and Ajaam, A. H. (2017, January), Conventional and high-strength hooked bars—Part 1: Anchorage tests. American Concrete InstitutURL
18 
Sperry, J., Darwin, D., O’Reilly, M., Lequesne, R. D., Yasso, S., Matamoros, A., ... and Lepage, A. (2017), Conventional and high-strength hooked bars—Part 2: Data analysis. ACI Structural Journal, 114(1), 267-276.URL
19 
Parastesh, Hossein, Iman Hajirasouliha, and Reza Ramezani. (2014), A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation, Engineering Structures 70.DOI