The Journal of
the Korean Society on Water Environment

The Journal of
the Korean Society on Water Environment

Bimonthly
  • ISSN : 2289-0971 (Print)
  • ISSN : 2289-098X (Online)
  • KCI Accredited Journal

Editorial Office

References

1 
Abeling U., Seyfried C., 1992, Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite, Water Science and Technology, Vol. 26, No. 5-6, pp. 1007-1015DOI
2 
Adams M., Xie J., Xie J., Chang Y., Guo M., Chen C., Zhang T. C., 2020, The effect of carrier addition on anammox start-up and microbial community: A review, Reviews in Environmental Science and Bio/Technology, Vol. 19, pp. 355-368DOI
3 
Ali M., Okabe S., 2015, Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues, Chemosphere, Vol. 141, pp. 144-153DOI
4 
Ali M., Oshiki M., Awata T., Isobe K., Kimura Z., Yoshikawa H., Hira D., Kindaichi T., Satoh H., Fujii T., 2015, Physiological characterization of anaerobic ammonium oxidizing bacterium ‘C andidatus J ettenia caeni’, Environmental Microbiology, Vol. 17, No. 6, pp. 2172-2189DOI
5 
Ali M., Shaw D. R., Saikaly P. E., 2020, Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua sp. AMX11” for nitrogen removal under moderate salinity and in the presence of organic carbon, Water Research, Vol. 170, pp. 115345DOI
6 
Anthonisen A. C., Loehr R. C., Prakasam T., Srinath E., 1976, Inhibition of nitrification by ammonia and nitrous acid, Journal Water Pollution Control Federation, Vol. 48, No. 5, pp. 835-852Google Search
7 
Arumugham T., Mohamad S. E., 2022, Anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’: A review, 012061, IOP Conference Series: Earth and Environmental Science, Vol. 1091, pp. 012061DOI
8 
Bhattacharjee A. S., Wu S., Lawson C. E., Jetten M. S. M., Kapoor V., Domingo J. W. S., McMahon K. D., Noguera D. R., Goel R., 2017, Whole-community metagenomics in two different anammox configurations: Process performance and community structure, Environmental Science & Technology, Vol. 51, No. 8, pp. 4317-4327DOI
9 
Camargo J. A., Alonso Á., 2006, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environment International, Vol. 32, No. 6, pp. 831-849DOI
10 
Chen C., Jiang Y., Zou X., Guo M., Liu H., Cui M., Zhang T. C., 2021, Insight into the influence of particle sizes on characteristics and microbial community in the anammox granular sludge, Journal of Water Process Engineering, Vol. 39, pp. 101883DOI
11 
Chen G., Wu W., Xu J., Wang Z., 2021, An anaerobic dynamic membrane bioreactor for enhancing sludge digestion: Impact of solids retention time on digestion efficacy, Bioresource Technology, Vol. 329, pp. 124864DOI
12 
Chen H., Hu H. Y., Chen Q. Q., Shi M. L., Jin R. C., 2016, Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties, Bioresource Technology, Vol. 211, pp. 594-602DOI
13 
Chen H., Liu T., Li J., Mao L., Ye J., Han X., Jetten M. S., Guo J., 2020, Larger anammox granules not only harbor higher species diversity but also support more functional diversity, Environmental Science & Technology, Vol. 54, No. 22, pp. 14664-14673DOI
14 
Chen H., Zhang B., Yu C., Zhang Z., Yao J., Jin R., 2021, The effects of magnetite on anammox performance: Phenomena to mechanisms, Bioresource Technology, Vol. 337, pp. 125470DOI
15 
Chen J., Ji Q., Zheng P., Chen T., Wang C., Mahmood Q., 2010, Floatation and control of granular sludge in a high-rate anammox reactor, Water Research, Vol. 44, No. 11, pp. 3321-3328DOI
16 
Chen W., Dai X., Cao D., Hu X., Liu W., Yang D., 2017, Characterization of a microbial community in an anammox process using stored anammox sludge, Water, Vol. 9, No. 11, pp. 829DOI
17 
Dai B., Yang Y., Wang Z., Wang J., Yang L., Cai X., Wang Z., Xia S., 2023, Enhancement and mechanisms of iron-assisted anammox process, Science of The Total Environment, Vol. 858, No. 3, pp. 159931DOI
18 
Dapena‐Mora A., Arrojo B., Campos J. L., Mosquera‐Corral A., Méndez R., 2004, Improvement of the settling properties of anammox sludge in an SBR, Journal of Chemical Technology and Biotechnology, Vol. 79, No. 12, pp. 1417-1420DOI
19 
Ding J., Seow W., Zhou J., Zeng R. J., Gu J., Zhou Y., 2021, Effects of Fe (II) on anammox community activity and physiologic response, Frontiers of Environmental Science & Engineering, Vol. 15, pp. 7DOI
20 
Dsane V. F., Jeon H., Choi Y., Jeong S., Choi Y., 2023, Characterization of magnetite assisted anammox granules based on in-depth analysis of extracellular polymeric substance (EPS), Bioresource Technology, Vol. 369, pp. 128372DOI
21 
Fang J., Lyon D. Y., Wiesner M. R., Dong J., Alvarez P. J., 2007, Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior, Environmental Science & Technology, Vol. 41, No. 7, pp. 2636-2642DOI
22 
Feng Z., Wu G., 2021, Start-up of anammox systems with different feeding patterns: system performancemicrobial community and potential microbial interactions, Journal of Water Process Engineering, Vol. 39, pp. 101694DOI
23 
Fernández-Gómez B., Richter M., Schüler M., Pinhassi J., Acinas S. G., González J. M., Pedrós-Alió C., 2013, Ecology of marine Bacteroidetes: A comparative genomics approach, The ISME Journal, Vol. 7, No. 5, pp. 1026-1037DOI
24 
Ferousi C., Lindhoud S., Baymann F., Kartal B., Jetten M. S., Reimann J., 2017, Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria, Current Opinion in Chemical Biology, Vol. 37, pp. 129-136DOI
25 
Gao F., Zhang H., Yang F., Li H., Zhang R., 2014, The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR), Process Biochemistry, Vol. 49, No. 11, pp. 1970-1978DOI
26 
Hao C., Dungait J.A., Wei X., Ge T., Kuzyakov Y., Cui Z., Tian J., Zhang F., 2022, Maize root exudate composition alters rhizosphere bacterial community to control hotspots of hydrolase activity in response to nitrogen supply, Soil Biology and Biochemistry, Vol. 170, pp. 108717DOI
27 
Hao X., Zeng W., Li J., Zhan M., Miao H., Gong Q., 2024, High-efficient nitrogen removal with low demand of Fe source and mechanism analysis driven by Fe (II)/Fe (III) cycle, Chemical Engineering Journal, Vol. 481, pp. 148702DOI
28 
Harhangi H. R., Le Roy M., van Alen T., Hu B. L., Groen J., Kartal B., Tringe S. G., Quan Z. X., Jetten M. S., Op den Camp H. J., 2012, Hydrazine synthasea unique phylomarker with which to study the presence and biodiversity of anammox bacteria, Applied and Environmental Microbiology, Vol. 78, No. 3, pp. 752-758DOI
29 
Hauck M., Maalcke-Luesken F. A., Jetten M. S., Huijbregts M. A., 2016, Removing nitrogen from wastewater with side stream anammox: what are the trade-offs between environmental impacts?, ResourcesConservation and Recycling, Vol. 107, pp. 212-219DOI
30 
Hira D., Toh H., Migita C. T., Okubo H., Nishiyama T., Hattori M., Furukawa K., Fujii T., 2012, Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1, FEBS Letters, Vol. 586, No. 11, pp. 1658-1663DOI
31 
Hu K., Li W., Wang Y., Wang B., Mu H., Ren S., Zeng K., Zhu H., Liang J., Xiao J., 2023, Novel biological nitrogen removal process for the treatment of wastewater with low carbon to nitrogen ratio: A review, Journal of Water Process Engineering, Vol. 53, pp. 103673DOI
32 
Humbert S., Zopfi J., Tarnawski S. E., 2012, Abundance of anammox bacteria in different wetland soils, Environmental Microbiology Reports, Vol. 4, No. 5, pp. 484-490DOI
33 
Ilieva Z., Hamza R. A., Suehring R., 2024, The significance of fluorinated compound chain lengthtreatment technologyand influent composition on per‐and polyfluoroalkyl substances removal in worldwide wastewater treatment plants, Integrated Environmental Assessment and Management, Vol. 20, No. 1, pp. 59-69DOI
34 
Jeong D., Kim W., Lim H., Bae H., 2020, Shift in bacterial community structure in response to salinity in a continuous anaerobic ammonium oxidation (anammox) reactor, International Biodeterioration & Biodegradation, Vol. 147, pp. 104873DOI
35 
Jetten M. S., Cirpus I., Kartal B., van Niftrik L., van de Pas-Schoonen K. T., Sliekers O., Haaijer S., van der Star W., Schmid M., van de Vossenberg J., Schmidt I., Harhangi H., van Loosdrecht M., Gijs Kuenen J., Op den Camp H., Strous M., 2005, 1994-2004: 10 years of research on the anaerobic oxidation of ammonium, Biochemical Society Transactions, Vol. 33, No. 1, pp. 119-123DOI
36 
Kang D., Xu D., Yu T., Feng C., Li Y., Zhang M., Zheng P., 2019, Texture of anammox sludge bed: composition featurevisual characterization and formation mechanism, Water Research, Vol. 154, pp. 180-188DOI
37 
Kartal B., de Almeida N. M., Maalcke W. J., Op den Camp H. J., Jetten M. S., Keltjens J. T., 2013, How to make a living from anaerobic ammonium oxidation, FEMS Microbiology Reviews, Vol. 37, No. 3, pp. 428-461DOI
38 
Kartal B., Geerts W., Jetten M. S., 2011, Cultivationdetectionand ecophysiology of anaerobic ammonium- oxidizing bacteria, Methods in Enzymology, Vol. 486, pp. 89-108DOI
39 
Kartal B., Kuenen J. G., Van Loosdrecht M., 2010, Sewage treatment with anammox, Science, Vol. 328, No. 5979, pp. 702-703DOI
40 
Kartal B., Maalcke W. J., de Almeida N. M., Cirpus I., Gloerich J., Geerts W., Op den Camp H. J., Harhangi H. R., Janssen-Megens E. M., Francoijs K. J., Stunnenberg H. G., Keltjens J. T., Jetten M. S., Strous M., 2011, Molecular mechanism of anaerobic ammonium oxidation, Nature, Vol. 479, No. 7371, pp. 127-130DOI
41 
Kartal B., van Niftrik L., Rattray J., van de Vossenberg J. L., Schmid M. C., Sinninghe Damsté J., Jetten M. S., Strous M., 2008, Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium, FEMS Microbiology Ecology, Vol. 63, No. 1, pp. 46-55DOI
42 
Khramenkov S., Kozlov M., Kevbrina M., Dorofeev A., Kazakova E., Grachev V., Kuznetsov B., Polyakov D. Y., Nikolaev Y. A., 2013, A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge, Microbiology, Vol. 82, No. 5, pp. 628-636DOI
43 
Kindaichi T., Yuri S., Ozaki N., Ohashi A., 2012, Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor, Water Science and Technology, Vol. 66, No. 12, pp. 2556-2561DOI
44 
Kirchman D. L., 2002, The ecology of Cytophaga-Flavobacteria in aquatic environments, FEMS Microbiology Ecology, Vol. 39, No. 2, pp. 91-100DOI
45 
Kong Q., He X., Feng Y., Miao M.-s., Wang Q., Xu F., 2017, Pollutant removal and microorganism evolution of activated sludge under ofloxacin selection pressure, Bioresource Technology, Vol. 241, pp. 849-856DOI
46 
Lawson C. E., Wu S., Bhattacharjee A. S., Hamilton J. J., McMahon K. D., Goel R., Noguera D. R., 2017, Metabolic network analysis reveals microbial community interactions in anammox granules, Nature Communications, Vol. 8, No. 1, pp. 15416DOI
47 
Li J., Ye W., Wei D., Ngo H. H., Guo W., Qiao Y., Xu W., Du B., Wei Q., 2018, System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress, Bioresource Technology, Vol. 270, pp. 512-518DOI
48 
Li K., Fang F., Wang H., Wang C., Chen Y., Guo J., Wang X., Jiang F., 2017, Pathways of N removal and N2O emission from a one-stage autotrophic N removal process under anaerobic conditions, Scientific Reports, Vol. 7, No. 1, pp. 42072DOI
49 
Li M., Hong Y., Klotz M. G., Gu J. D., 2010, A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments, Applied Microbiology and Biotechnology, Vol. 86, No. 2, pp. 781-790DOI
50 
Li X. R., Du B., Fu H. X., Wang R. F., Shi J. H., Wang Y., Jetten M. S., Quan Z. X., 2009, The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community, Systematic and Applied Microbiology, Vol. 32, No. 4, pp. 278-289DOI
51 
Li Y., Pan L., Zhu Y., Yu Y., Wang D., Yang G., Yuan X., Liu X., Li H., Zhang J., 2019, How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?, Water Research, Vol. 163, pp. 114912DOI
52 
Lin L., Pratt S., Crick O., Xia J., Duan H., Ye L., 2021, Salinity effect on freshwater anammox bacteria: Ionic stress and ion composition, Water Research, Vol. 188, pp. 116432DOI
53 
Liu N., Sun Z., Zhang H., Klausen L. H., Moonhee R., Kang S., 2023, Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques, The Science of The Total Environment, Vol. 875, pp. 162603DOI
54 
Liu Q., Liu B., Li W., Zhao X., Zuo W., Xing D., 2017, Impact of ferrous iron on microbial community of the biofilm in microbial fuel cells, Frontiers in Microbiology, Vol. 8, pp. 920DOI
55 
Liu S., Horn H., 2012, Effects of Fe (II) and Fe (III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering, Bioresource Technology, Vol. 114, pp. 12-19DOI
56 
Liu T., Tian R., Li Q., Wu N., Quan X., 2021, Strengthened attachment of anammox bacteria on iron-based modified carrier and its effects on anammox performance in integrated floating-film activated sludge (IFFAS) process, The Science of The Total Environment, Vol. 787, pp. 147679DOI
57 
Lotti T., Kleerebezem R., Abelleira-Pereira J., Abbas B., Van Loosdrecht M., 2015, Faster through training: The anammox case, Water Research, Vol. 81, pp. 261-268DOI
58 
Madigan M. T., Martinko J., 2005, Brock biology of microorganisms, SciELO Espana
59 
Matsumoto S., Katoku M., Saeki G., Terada A., Aoi Y., Tsuneda S., Picioreanu C., Van Loosdrecht M. C., 2010, Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses, Environmental Microbiology, Vol. 12, No. 1, pp. 192-206DOI
60 
Meng F., Su G., Hu Y., Lu H., Huang L. N., Chen G. H., 2014, Improving nitrogen removal in an ANAMMOX reactor using a permeable reactive biobarrier, Water Research, Vol. 58, pp. 82-91DOI
61 
Mielczarek A. T., Nguyen H. T. T., Nielsen J. L., Nielsen P. H., 2013, Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants, Water Research, Vol. 47, No. 4, pp. 1529-1544DOI
62 
Ministry of Environment (ME), 2024, Framework act on environmental policy, [Korean Literature], Ministry of EnvironmentGoogle Search
63 
Mu X., Yang J., Chang G., Yang Y., Li S., Luo J., Li X., 2023, Microbial driving mechanism for nitrogen removal performance of anammox with combined fillers addition: Microbial community dynamicsmetabolic function and network analysis, Biochemical Engineering Journal, Vol. 199, pp. 109047DOI
64 
Narita Y., Zhang L., Kimura Z. I., Ali M., Fujii T., Okabe S., 2017, Enrichment and physiological characterization of an anaerobic ammonium–oxidizing bacterium ‘Candidatus Brocadia sapporoensis’, Systematic and Applied Microbiology, Vol. 40, No. 7, pp. 448-457DOI
65 
Naufal M., Wu J. H., 2024, Chemomixoautotrophy and stress adaptation of anammox bacteria: A review, Water Research, Vol. 257, pp. 121663DOI
66 
Ni B. J., Hu B. L., Fang F., Xie W. M., Kartal B., Liu X. W., Sheng G. P., Jetten M., Zheng P., Yu H. Q., 2010, Microbial and physicochemical characteristics of compact anaerobic ammonium–oxidizing granules in an upflow anaerobic sludge blanket reactor, Applied and Environmental Microbiology, Vol. 76, No. 8, pp. 2652-2656DOI
67 
Ni L., Lin X., Yan H., Wang Y., 2019, A novel anammox granules–circulating expanded granular sludge bed reactor for the efficient circulation and retention of floating anammox granules, Chemosphere, Vol. 235, pp. 316-326DOI
68 
Ni S. Q., Sun N., Yang H., Zhang J., Ngo H. H., 2015, Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation, Biochemical Engineering Journal, Vol. 101, pp. 126-133DOI
69 
Nielsen P. H., Kragelund C., Seviour R. J., Nielsen J. L., 2009, Identity and ecophysiology of filamentous bacteria in activated sludge, FEMS Microbiology Reviews, Vol. 33, No. 6, pp. 969-998DOI
70 
Nikolaev Y.A., Kozlov M., Kevbrina M., Dorofeev A., Pimenov N., Kallistova A.Y., Grachev V., Kazakova E., Zharkov A., Kuznetsov B., 2015, Candidatus “Jettenia moscovienalis” sp. nov.a new species of bacteria carrying out anaerobic ammonium oxidation, Microbiology, Vol. 84, pp. 256-262DOI
71 
Okabe S., Kamizono A., Zhang L., Kawasaki S., Kobayashi K., Oshiki M., 2024, Salinity tolerance and osmoadaptation strategies in four genera of anammox bacteria: BrocadiaJetteniaKueneniaand Scalindua, Environmental Science & Technology, Vol. 58, No. 12, pp. 5357-5371DOI
72 
Oshiki M., Shimokawa M., Fujii N., Satoh H., Okabe S., 2011, Physiological characteristics of the anaerobic ammonium–oxidizing bacterium ‘Candidatus Brocadia sinica’, Microbiology, Vol. 157, No. 6, pp. 1706-1713DOI
73 
Park J., Song M., Cho M., Shin Y. U., Jeong S., Hwang K., Bae H., 2024, Iron particle–integrated anammox granules in baffled reactor: Enhanced settling property and nitrogen removal performance, Bioresource Technology, Vol. 402, pp. 130792DOI
74 
Park S., Cho K., Lee T., Lee E., Bae H., 2022, Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing, Science of The Total Environment, Vol. 822, pp. 153644DOI
75 
Peng M. W., Fu H. M., Yan P., Liu P., Weng X., Fang F., Guo J., Zhou X., Chen Y. P., 2022, Deep insights into the roles of iron in the structure and function of the anammox granular sludge system, ACS Sustainable Chemistry & Engineering, Vol. 10, No. 24, pp. 7896-7906DOI
76 
Penton C. R., Devol A. H., Tiedje J. M., 2006, Molecular evidence for the broad distribution of anaerobic ammonium–oxidizing bacteria in freshwater and marine sediments, Applied and Environmental Microbiology, Vol. 72, No. 10, pp. 6829-6832DOI
77 
Pereira A. D., Cabezas A., Etchebehere C., Chernicharo C. A., de Araújo J. C., 2017, Microbial communities in anammox reactors: A review, Environmental Technology Reviews, Vol. 6, No. 1, pp. 74-93DOI
78 
Qiao S., Bi Z., Zhou J., Cheng Y., Zhang J., 2013, Long term effects of divalent ferrous ion on the activity of anammox biomass, Bioresource Technology, Vol. 142, pp. 490-497DOI
79 
Quan Z. X., Rhee S. K., Zuo J. E., Yang Y., Bae J. W., Park J. R., Lee S. T., Park Y. H., 2008, Diversity of ammonium‐oxidizing bacteria in a granular sludge anaerobic ammonium‐oxidizing (anammox) reactor, Environmental Microbiology, Vol. 10, No. 11, pp. 3130-3139DOI
80 
Schalk J., de Vries S., Kuenen J. G., Jetten M. S., 2000, Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation, Biochemistry, Vol. 39, No. 18, pp. 5405-5412DOI
81 
Schmid M. C., Hooper A. B., Klotz M. G., Woebken D., Lam P., Kuypers M. M., Pommerening‐Roeser A., Op Den Camp H. J., Jetten M. S., 2008, Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium‐oxidizing bacteria, Environmental Microbiology, Vol. 10, No. 11, pp. 3140-3149DOI
82 
Shimamura M., Nishiyama T., Shigetomo H., Toyomoto T., Kawahara Y., Furukawa K., Fujii T., 2007, Isolation of a multiheme protein with features of a hydrazine–oxidizing enzyme from an anaerobic ammonium–oxidizing enrichment culture, Applied and Environmental Microbiology, Vol. 73, No. 4, pp. 1065-1072DOI
83 
Shu D., He Y., Yue H., Yang S., 2016, Effects of Fe (II) on microbial communitiesnitrogen transformation pathways and iron cycling in the anammox process: Kineticsquantitative molecular mechanism and metagenomic analysis, RSC Advances, Vol. 6, No. 72, pp. 68005-68016DOI
84 
Sonthiphand P., Hall M. W., Neufeld J. D., 2014, Biogeography of anaerobic ammonia–oxidizing (anammox) bacteria, Frontiers in Microbiology, Vol. 5, pp. 399DOI
85 
Strous M., Fuerst J. A., Kramer E. H., Logemann S., Muyzer G., Van De Pas–Schoonen K.T., Webb R., Kuenen J. G., Jetten M. S., 1999, Missing lithotroph identified as new planctomycete, Nature, Vol. 400, No. 6743, pp. 446-449DOI
86 
Strous M., Heijnen J., Kuenen J. G., Jetten M. S., 1998, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium–oxidizing microorganisms, Applied Microbiology and Biotechnology, Vol. 50, pp. 589-596DOI
87 
Strous M., Pelletier E., Mangenot S., Rattei T., Lehner A., Taylor M. W., Horn M., Daims H., Bartol–Mavel D., Wincker P., Barbe V., Fonknechten N., Vallenet D., Segurens B., Schenowitz–Truong C., Medigue C., Horn A., Snel B., Dutilh B. E., Op Den Camp H. J. M., Van Der Drift C. D., Cirpus I., van de Pas–Schoonen K. T., Harhangi H. R., Van Niftrik L., Schmid M. C., Keltjens J. T. M., van de Vossenberg J., Kartal B., Meier H., Frishman D. I., Huynen M. A., Mewes H. W., Weissenbach J. S., Jetten M. S. M., Wagner M., Le Paslier D. L., 2006, Deciphering the evolution and metabolism of an anammox bacterium from a community genome, Nature, Vol. 440, No. 7085, pp. 790-794DOI
88 
Su K. Z., Ni B. J., Yu H. Q., 2013, Modeling and optimization of granulation process of activated sludge in sequencing batch reactors, Biotechnology and Bioengineering, Vol. 110, No. 5, pp. 1312-1322DOI
89 
Sui H., Zhang B., Wen Z., Zhang N., Zhang N., Zhang R., Li Z., Xue R., 2024, The positive role of pyrite in anammox performance and granulation, Journal of Water Process Engineering, Vol. 67, pp. 106114DOI
90 
Suominen S., Doorenspleet K., Sinninghe Damsté J. S., Villanueva L., 2021, Microbial community development on model particles in the deep sulfidic waters of the Black Sea, Environmental Microbiology, Vol. 23, No. 6, pp. 2729-2746DOI
91 
Tang C. J., Zheng P., Wang C. H., Mahmood Q., Zhang J. Q., Chen X. G., Zhang L., Chen J. W., 2011, Performance of high–loaded ANAMMOX UASB reactors containing granular sludge, Water Research, Vol. 45, No. 1, pp. 135-144DOI
92 
Trigo C., Campos J., Garrido J., Mendez R., 2006, Start–up of the anammox process in a membrane bioreactor, Journal of Biotechnology, Vol. 126, No. 4, pp. 475-487DOI
93 
Trinh H. P., Lee S. H., Kim N. K., Yoon H., Jeong G., Jung Y. J., Hur M., Lee B. H., Park H. D., 2022, Enrichment of Ca. Jettenia in sequencing batch reactors operated with low nitrogen loading rate and high influent nitrogen concentration, Bioresource Technology, Vol. 352, pp. 127079DOI
94 
Tsushima I., Kindaichi T., Okabe S., 2007, Quantification of anaerobic ammonium–oxidizing bacteria in enrichment cultures by real–time PCR, Water Research, Vol. 41, No. 4, pp. 785-794DOI
95 
van De Graaf A. A., Mulder A., De Bruijn P., Jetten M., Robertson L. A., Kuenen J. G., 1995, Anaerobic oxidation of ammonium is a biologically mediated process, Applied and Environmental Microbiology, Vol. 61, No. 4, pp. 1246-1251DOI
96 
van der Star W. R., Abma W. R., Blommers D., Mulder J. W., Tokutomi T., Strous M., Picioreanu C., van Loosdrecht M. C., 2007, Startup of reactors for anoxic ammonium oxidation: Experiences from the first full–scale anammox reactor in Rotterdam, Water research, Vol. 41, No. 18, pp. 4149-4163DOI
97 
van der Star W. R., Miclea A. I., van Dongen U. G., Muyzer G., Picioreanu C., van Loosdrecht M. C., 2008, The membrane bioreactor: a novel tool to grow anammox bacteria as free cells, Biotechnology and Bioengineering, Vol. 101, No. 2, pp. 286-294DOI
98 
van der Star W. R., van de Graaf M. J., Kartal B., Picioreanu C., Jetten M. S., Van Loosdrecht M. C., 2008, Response of anaerobic ammonium–oxidizing bacteria to hydroxylamine, Applied and Environmental Microbiology, Vol. 74, No. 14, pp. 4417-4426DOI
99 
van Niftrik L., Jetten M. S., 2012, Anaerobic ammonium–oxidizing bacteria: Unique microorganisms with exceptional properties, Microbiology and Molecular Biology Reviews, Vol. 76, No. 3, pp. 585-596DOI
100 
van Niftrik L., Geerts W. J., van Donselaar E. G., Humbel B. M., Yakushevska A., Verkleij A. J., Jetten M. S., Strous M., 2008, Combined structural and chemical analysis of the anammoxosome: A membrane–bounded intracytoplasmic compartment in anammox bacteria, Journal of Structural Biology, Vol. 161, No. 3, pp. 401-410DOI
101 
Villaverde S., Garcia–Encina P., Fdz–Polanco F., 1997, Influence of pH over nitrifying biofilm activity in submerged biofilters, Water Research, Vol. 31, No. 5, pp. 1180-1186DOI
102 
Wang D., Zheng W., Liao D., Li X., Yang Q., Zeng G., 2013, Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended–idle regime, Chemosphere, Vol. 90, No. 8, pp. 2279-2287DOI
103 
Wang H., Chen H., Liu S., Li L., Yang D., Dai X., 2023, Inhibition and recovery of UASB–Anammox process: Performance characteristics and microbial community dynamics in response to substrate concentration and dissolved oxygen exposure, Journal of Water Process Engineering, Vol. 51, pp. 103472DOI
104 
Wang H., Fan Y., Zhou M., Wang W., Li X., Wang Y., 2022, Function of Fe (III)–minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses, Water Research, Vol. 210, pp. 117998DOI
105 
Wang H., Peng L., Mao N., Geng J., Ren H., Xu K., 2021, Effects of Fe3+ on microbial communities shiftsfunctional genes expression and nitrogen transformation during the start–up of anammox process, Bioresource Technology, Vol. 320, No. Part A, pp. 124326DOI
106 
Wang S., Hong Y., Wu J., Xu X.-R., Bin L., Pan Y., Guan F., Wen J., 2015, Comparative analysis of two 16S rRNA gene–based PCR primer sets provides insight into the diversity distribution patterns of anammox bacteria in different environments, Applied Microbiology and Biotechnology, Vol. 99, pp. 8163-8176DOI
107 
Wang W., Li D., Li S., Zeng H., Zhang J., 2022, Characteristics and mechanism of hollow anammox granular sludge with different settling properties, Journal of Environmental Chemical Engineering, Vol. 10, No. 2, pp. 107230DOI
108 
Wang W., Wang J., Wang H., Ma J., Wu M., Wang Y., 2020, Anammox granule enlargement by heterogenous granule self–assembly, Water Research, Vol. 187, pp. 116454DOI
109 
Wang X., Shu D., Yue H., 2016, Taxonomical and functional microbial community dynamics in an Anammox–ASBR system under different Fe (III) supplementation, Applied Microbiology and Biotechnology, Vol. 100, pp. 10147-10163DOI
110 
Wang Y., Chen J., Zhou S., Wang X., Chen Y., Lin X., Yan Y., Ma X., Wu M., Han H., 2017, 16S rRNA gene high–throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress, Chemical Engineering Journal, Vol. 317, pp. 512-521DOI
111 
Wang Y., Guo G., Wang H., Stephenson T., Guo J., Ye L., 2013, Long–term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems, Water Research, Vol. 47, No. 14, pp. 5326-5337DOI
112 
Wang Y., Ren S., Wang P., Wang B., Hu K., Li J., Wang Y., Li Z., Li S., Li W., 2023, Autotrophic denitrification using Fe (II) as an electron donor: a novel prospective denitrification process, Science of The Total Environment, Vol. 858, pp. 159721DOI
113 
Wang Z. B., Ni S. Q., Zhang J., Zhu T., Ma Y. G., Liu X. L., Kong Q., Miao M. S., 2016, Gene expression and biomarker discovery of anammox bacteria in different reactors, Biochemical Engineering Journal, Vol. 115, pp. 108-114DOI
114 
Wei D., Ngo H.H., Guo W., Xu W., Du B., Wei Q., 2018, Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievementperformance and microbial community, Bioresource Technology, Vol. 269, pp. 25-31DOI
115 
Wett B., 2007, Development and implementation of a robust deammonification process, Water Science and Technology, Vol. 56, No. 7, pp. 81-88DOI
116 
Winkler M. K., Straka L., 2019, New directions in biological nitrogen removal and recovery from wastewater, Current Opinion in Biotechnology, Vol. 57, pp. 50-55DOI
117 
Wu N., Zeng M., Zhu B., Zhang W., Liu H., Yang L., Wang L., 2018, Impacts of different morphologies of anammox bacteria on nitrogen removal performance of a hybrid bioreactor: Suspended sludgebiofilm and gel beads, Chemosphere, Vol. 208, pp. 460-468DOI
118 
Xia Y., Kong Y., Nielsen P. H., 2007, In situ detection of protein–hydrolysing microorganisms in activated sludge, FEMS Microbiology Ecology, Vol. 60, No. 1, pp. 156-165DOI
119 
Xiao K., Chen Y., Jiang X., Yang Q., Seow W.Y., Zhu W., Zhou Y., 2017, Variations in physicalchemical and biological properties in relation to sludge dewaterability under Fe (II)–Oxone conditioning, Water Research, Vol. 109, pp. 13-23DOI
120 
Xie Y., Dong H., Zeng G., Tang L., Jiang Z., Zhang C., Deng J., Zhang L., Zhang Y., 2017, The interactions between nanoscale zero–valent iron and microbes in the subsurface environment: A review, Journal of Hazardous Materials, Vol. 321, pp. 390-407DOI
121 
Xu J. J., Cheng Y. F., Jin R. C., 2020, Long–term effects of Fe3O4 NPs on the granule–based anaerobic ammonium oxidation process: Performancesludge characteristics and microbial community, Journal of Hazardous Materials, Vol. 398, pp. 122965DOI
122 
Yan Y., Wang Y., Wang W., Zhou S., Wang J., Guo J., 2019, Comparison of short–term dosing ferrous ion and nanoscale zero–valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition, Water Research, Vol. 153, pp. 284-294DOI
123 
Yang Y., Chen Z., Wang X., Zheng L., Gu X., 2017, Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment, Bioresource Technology, Vol. 241, pp. 473-481DOI
124 
Yang Y., Li M., Li H., Li X. Y., Lin J. G., Denecke M., Gu J. D., 2020, Specific and effective detection of anammox bacteria using PCR primers targeting the 16S rRNA gene and functional genes, Science of The Total Environment, Vol. 734, pp. 139387DOI
125 
Yang Y., Lu Z., Azari M., Kartal B., Du H., Cai M., Herbold C. W., Ding X., Denecke M., Li X., Li M., Gu J. D, 2022, Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance, Water Research, Vol. 226, pp. 119165DOI
126 
Yang Y., Zhang L., Cheng J., Zhang S., Li X., Peng Y., 2018, Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream, Bioresource Technology, Vol. 251, pp. 327-333DOI
127 
Yoda M., Nishimura S., 1997, Controlling granular sludge floatation in UASB reactors, Water Science and Technology, Vol. 36, No. 6–7, pp. 165-173DOI
128 
Yu C., Huang X., Chen H., Godfray H. C. J., Wright J. S., Hall J. W., Gong P., Ni S., Qiao S., Huang G., Xiao Y., Zhang J., Feng Z., Ju X., Ciais P., Stenseth N. C., Hessen D. O., Sun Z., Yu L., Cai W., Fu H. H., Huang X. M., Zhang C., Liu H. B., Taylor J., 2019, Managing nitrogen to restore water quality in China, Nature, Vol. 567, No. 7749, pp. 516-520DOI
129 
Yuan Y., Zhou Z., Jiang J., Wang K., Yu S., Qiang J., Ming Q., An Y., Ye J., Wu D., 2021, Partial nitrification performance and microbial community evolution in the membrane bioreactor for saline stream treatment, Bioresource Technology, Vol. 320, pp. 124419DOI
130 
Zhang K., Yang B., Ma Y., Lyu L., Pan Y., Wang Y., Li H., Zhu T., 2018, A novel anammox process combined with vibration technology, Bioresource Technology, Vol. 256, pp. 277-284DOI
131 
Zhang L., Okabe S., 2020, Ecological niche differentiation among anammox bacteria, Water Research, Vol. 171, pp. 115468DOI
132 
Zhang L., Narita Y., Gao L., Ali M., Oshiki M., Okabe S., 2017, Maximum specific growth rate of anammox bacteria revisited, Water Research, Vol. 116, pp. 296-303DOI
133 
Zhang L., Wang Y., Hao S., Dou Q., Lan S., Peng Y., 2022, Anammox–synchronous zero–valent iron oxidation promoting synergistic nitrogen and phosphorus removal from wastewater, Bioresource Technology, Vol. 347, pp. 126365DOI
134 
Zhang S., Zhang L., Yao H., Rong H., Li S., 2021, Responses of anammox process to elevated Fe (III) stress: Reactor performancemicrobial community and functional genes, Journal of Hazardous Materials, Vol. 414, pp. 125051DOI
135 
Zhang X., Chen T., Zhang J., Zhang H., Zheng S., Chen Z., Ma Y., 2018, Performance of the nitrogen removalbioactivity and microbial community responded to elevated norfloxacin antibiotic in an anammox biofilm system, Chemosphere, Vol. 210, pp. 1185-1192DOI
136 
Zhang X., Wei D., Zhang H., He Y., Zhang S., Dai J., Wen X., 2022, Comprehensive analysis of the impacts of iron–based nanoparticles and ions on anammox process, Biochemical Engineering Journal, Vol. 180, pp. 108371DOI
137 
Zhang Z. Z., Cheng Y. F., Bai Y. H., Xu J. J., Shi Z. J., Zhang Q. Q., Jin R. C., 2018, Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high–rate anammox reactor: performancemicrobial community and sludge characteristics, Bioresource Technology, Vol. 250, pp. 265-272DOI
138 
Zhang Z. Z., Xu J. J., Shi Z. J., Bai Y. H., Cheng Y. F., Hu H. Y., Jin R. C., 2017, Unraveling the impact of nanoscale zero–valent iron on the nitrogen removal performance and microbial community of anammox sludge, Bioresource Technology, Vol. 243, pp. 883-892DOI
139 
Zhao Y., Liu S., Jiang B., Feng Y., Zhu T., Tao H., Tang X., Liu S., 2018, Genome–centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross–feed with anammox bacteria in anammox consortia, Environmental Science & Technology, Vol. 52, No. 19, pp. 11285-11296DOI
140 
Zhu Y., Zhang Y., Ren H. Q., Geng J. J., Xu K., Huang H., Ding L. L., 2015, Physicochemical characteristics and microbial community evolution of biofilms during the start–up period in a moving bed biofilm reactor, Bioresource Technology, Vol. 180, pp. 345-351DOI