• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Electrical Engineering, Soongsil University, Republic of Korea. E-mail: wnsji1023@naver.com, eognseoqkr@naver.com, dla3388@naver.com, dnjsclf145@gmail.com)



BLDC motor, Fault diagnosis, STM32 microcontroller, FFT, CNN

1. ์„œ ๋ก 

BLDC(Brushless DC) ๋ชจํ„ฐ๋Š” ์˜๊ตฌ์ž์„ ํšŒ์ „์ž์™€ ์ „์ž์‹ ์Šค์œ„์นญ ํšŒ๋กœ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ตฌ์กฐ๋กœ, ๋ธŒ๋Ÿฌ์‹œ ๋งˆ๋ชจ๊ฐ€ ์—†์–ด ํšจ์œจ์ด ๋†’๊ณ  ์ „๊ธฐ์ž๋™์ฐจ๋‚˜ ๋“œ๋ก  ๋“ฑ ๊ณ ์‹ ๋ขฐ ๊ตฌ๋™๊ณ„์— ๋„๋ฆฌ ์ ์šฉ๋˜๊ณ  ์žˆ๋‹ค[1]. ๊ทธ๋Ÿฌ๋‚˜ ์žฅ์‹œ๊ฐ„ ์šด์ „ ์‹œ ๋น„๋Œ€์นญ ๋ถ€ํ•˜๋‚˜ ์ด๋ฌผ์งˆ ์œ ์ž… ๋“ฑ์œผ๋กœ ์ธํ•ด ํ† ํฌ ๋ฆฌํ”Œ ์ฆ๊ฐ€ ๋ฐ ํšจ์œจ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฅ˜ยท์ง„๋™ยท์ž์† ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ง„๋‹จ ๊ธฐ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์–ด ์™”์œผ๋ฉฐ, ํผ์ง€ ์œ ์‚ฌ๋„ ๋ถ„์„[2], ์ „๋ฅ˜โ€“์ง„๋™ ์œตํ•ฉ ๊ธฐ๋ฐ˜ ์ง„๋‹จ ํ”„๋ ˆ์ž„์›Œํฌ[3] ๋“ฑ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ๋‹ค๋งŒ, ์ถ”๊ฐ€ ์„ผ์„œ๋ฅผ ์š”๊ตฌํ•˜๋Š” ๋ฐฉ์‹์€ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ์„ ์ฆ๊ฐ€์‹œ์ผฐ๊ณ , ์ €๋น„์šฉ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ์ด๋‚˜ FFT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„์€ ๋น„์„ ํ˜•ยท๋ถˆ๊ทœ์น™ ์‹ ํ˜ธ ํŒ๋ณ„์— ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค.

์ตœ๊ทผ์—๋Š” ์„ผ์„œ ๊ธฐ๋ฐ˜ ์ƒํƒœ ๋ชจ๋‹ˆํ„ฐ๋ง[6], ์ €๋น„์šฉยท๊ณ ์ฃผํŒŒ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ง„๋‹จ ํ”„๋ ˆ์ž„์›Œํฌ[7], ์ „๋ ฅ ๋ณ€ํ™˜๊ธฐ ๋‚ด AI ๊ธฐ๋ฐ˜ ์ง„๋‹จ[5] ๋“ฑ์œผ๋กœ ์—ฐ๊ตฌ๊ฐ€ ํ™•์žฅ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ CNN ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ๋ถ„๋ฅ˜ ์—ฐ๊ตฌ๋Š” ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ์™€ ๊ณ ์„ฑ๋Šฅ ์—ฐ์‚ฐ ํ™˜๊ฒฝ์„ ์ „์ œ๋กœ ํ•œ ์˜คํ”„๋ผ์ธ ํ•™์Šต ๊ตฌ์กฐ๊ฐ€ ์ฃผ๋ฅผ ์ด๋ฃจ์–ด, ์‹ค์‹œ๊ฐ„ ์ ์šฉ์„ฑ ๋ฐ ์ €๋น„์šฉ MCU ํ™˜๊ฒฝ์—์„œ์˜ ํ™œ์šฉ์„ฑ ๊ฒ€์ฆ์ด ๋ถ€์กฑํ–ˆ๋‹ค.

์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” STM32 ๊ธฐ๋ฐ˜ ์ €๋น„์šฉ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํ™˜๊ฒฝ์—์„œ CNN ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ , ๋‹ค๋ฅธ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ณ ์žฅ ์ƒํƒœ ๋ถ„๋ฅ˜๋ฅผ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ๊ฒฝ๋Ÿ‰ยท์‹ค์‹œ๊ฐ„ CNN ์ง„๋‹จ ๊ตฌ์กฐ์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. FFT ๋ณ€ํ™˜์„ ํ†ตํ•ด ์–ป์€ ์ฃผํŒŒ์ˆ˜ ์ŠคํŽ™ํŠธ๋Ÿผ์„ CNN ์ž…๋ ฅ์œผ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ BLDC ๋ชจํ„ฐ์˜ ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๋ฐ ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ๋ถ„๋ฅ˜ํ•˜์˜€์œผ๋ฉฐ, CNN, RNN, MobileNetV2 ๋“ฑ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ๊ณผ ์ž…๋ ฅ ํ‘œํ˜„์„ ๋น„๊ตํ•จ์œผ๋กœ์จ ์ œ์•ˆ ๊ธฐ๋ฒ•์˜ ์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.

2. ์‹คํ—˜ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ ๋ฐ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” STM32 ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ ๊ธฐ๋ฐ˜์˜ ์‹คํ—˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ์‹œ์Šคํ…œ์€ GM4108L-120T BLDC ๋ชจํ„ฐ, ACS712-5A ์ „๋ฅ˜ ์„ผ์„œ, BLMD-100-D ๋ชจํ„ฐ ๋“œ๋ผ์ด๋ฒ„ ๋ฐ STM32 Nucleo-L432KC ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ์˜ ๋Œ€๋žต์ ์ธ ๊ตฌ์กฐ๋Š” ์•„๋ž˜ ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™๋‹ค.

๊ทธ๋ฆผ 1 ์‹คํ—˜ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ๋„

Fig. 1 Experimental system configuration

../../Resources/kiee/KIEE.2026.75.2.324/fig1.png

STM32 ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํ†ตํ•ด ์ „๋ฅ˜ ์„ผ์„œ์˜ ์•„๋‚ ๋กœ๊ทธ ์‹ ํ˜ธ๋ฅผ ๋””์ง€ํ„ธ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ˆ˜์ง‘ํ•ด, ์ด๋ฅผ UART ํ†ต์‹ ์œผ๋กœ ๋…ธํŠธ๋ถ์— ์—ฐ๊ฒฐ๋œ ํ„ฐ๋ฏธ๋„ ์†Œํ”„ํŠธ์›จ์–ด(Tera Term)์— ์ „์†กํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ „๋ฅ˜ ์„ผ์„œ๋Š” ๋ชจํ„ฐ ๊ตฌ๋™ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ์ „๋ฅ˜ ๋ณ€ํ™”๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •ํ•˜์—ฌ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋‹จ๊ณ„๋กœ ์ „๋‹ฌํ•˜๋Š” ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ์‹œ์Šคํ…œ์€ ํ•™๋ถ€ ์ˆ˜์ค€์—์„œ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ์ €๋น„์šฉ ์‹คํ—˜ ํ™˜๊ฒฝ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ํ•˜๋“œ์›จ์–ด ๊ฐ„์˜ ์ง๊ด€์ ์ธ ์—ฐ๊ฒฐ์„ ํ†ตํ•ด ๊ตฌ์„ฑ์˜ ๋‹จ์ˆœ์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค. ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์ง‘์€ ๊ณ ์žฅ ํŒ๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ•™์Šตยท๊ฒ€์ฆ ๋ฐ ๋‹ค์–‘ํ•œ ๊ณ ์žฅ ์กฐ๊ฑด ๋น„๊ต ๋ถ„์„์— ํ•ต์‹ฌ์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ์€ BLDC ๋ชจํ„ฐ์˜ ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ํ˜„์‹ค์  ์ œ์•ฝ๊ณผ ์‹ค์šฉ์  ์š”๊ฑด์„ ๊ท ํ˜• ์žˆ๊ฒŒ ๊ณ ๋ คํ•˜์—ฌ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 2 BLDC ๋ชจํ„ฐ ๊ณ ์žฅ (a) ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์ƒํƒœ (b) ๊ธˆ์† ํด๋ฆฝ 10๊ฐœ(10g)๋ฅผ ํ•œ์ชฝ์— ๋ถ€์ฐฉํ•œ ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ

Fig. 2 BLDC motor fault conditions: (a) Foreign object insertion fault state, (b) Asymmetric load fault state

../../Resources/kiee/KIEE.2026.75.2.324/fig2-1.png../../Resources/kiee/KIEE.2026.75.2.324/fig2-2.png

๋ณธ ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ๊ณ ์žฅ ์กฐ๊ฑด์€ ๊ทธ๋ฆผ 2์— ๋„์‹œ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ดํ›„ ๊ฐ ์กฐ๊ฑด์— ๋”ฐ๋ผ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค.

๊ณ ์žฅ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์€ ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ์ •์ƒ ์ƒํƒœ์˜ ๋ชจํ„ฐ ๊ตฌ๋™ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ค€ ๋ฐ์ดํ„ฐ๋กœ ์ˆ˜์ง‘ํ•œ ํ›„, ๊ทธ๋ฆผ 2 (a)์™€ ๊ฐ™์ด BLDC ๋ชจํ„ฐ์˜ ๋ฒ ์–ด๋ง ๋‚ด๋ถ€์— ์ด๋ฌผ์งˆ(ํฌ์ŠคํŠธ์ž‡ ์กฐ๊ฐ)์„ ์‚ฝ์ž…ํ•˜์—ฌ ๋งˆ์ฐฐ ๋ฐ ๋ฏธ์„ธ ์ง„๋™์„ ์œ ๋ฐœํ•˜๋Š” ๊ณ ์žฅ ์กฐ๊ฑด์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ , ๊ทธ๋ฆผ 2 (b)์™€ ๊ฐ™์ด ํšŒ์ „์ถ•์— ๊ธˆ์† ํด๋ฆฝ์„ 10๊ฐœ(์•ฝ 10g)๋ฅผ ๋ถ€์ฐฉํ•˜์—ฌ ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ์กฐ๊ฑด์„ ์ธ์œ„์ ์œผ๋กœ ์กฐ์„ฑํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์ด ๋‘ ์กฐ๊ฑด์€ ์‚ฐ์—… ํ˜„์žฅ์—์„œ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•˜๋ฉฐ, ํ•™๋ถ€ ์ˆ˜์ค€ ํ™˜๊ฒฝ์—์„œ๋„ ์•ˆ์ „ํ•˜๊ฒŒ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•˜๊ณ  ์ „๋ฅ˜ ํŒŒํ˜• ๋ณ€ํ™”๊ฐ€ ๋šœ๋ ทํ•ด ์‹คํ—˜ ๋Œ€์ƒ์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ถŒ์„  ๋‹จ๋ฝ, ๋ฒ ์–ด๋ง ์†์ƒ ๋“ฑ ๋‹ค๋ฅธ ๊ณ ์žฅ์€ ์ œ์–ด๊ฐ€ ์–ด๋ ต๊ณ  ์•ˆ์ „ ์‚ฌ๊ณ  ๋ฐœ์ƒ ์œ„ํ—˜์ด ์ปค ์—ฐ๊ตฌ ๋ฒ”์œ„์—์„œ ์ œ์™ธํ•˜์˜€๋‹ค.

์‹คํ—˜์— ์‚ฌ์šฉ๋œ BLDC ๋ชจํ„ฐ๋Š” 8๊ทน 12์Šฌ๋กฏ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋ฉฐ, ๋ฌด๋ถ€ํ•˜ ์ƒํƒœ์—์„œ์˜ ์ •๊ฒฉ์†๋„๋Š” 4000 rpm์ด๋‹ค. Nyquist theorem ์ด๋ก ์— ๋”ฐ๋ผ ์ตœ์†Œ 533.4 Hz ์ด์ƒ์˜ ์ƒ˜ํ”Œ๋ง ์ฃผํŒŒ์ˆ˜๊ฐ€ ์š”๊ตฌ๋™ค๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ ์กฐ๊ฑด๋ณ„ ๋ฐ์ดํ„ฐ๋Š” 0.5 ms์˜ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๋กœ 2.5์ดˆ๊ฐ„ ์ˆ˜์ง‘๋˜์–ด ์•ฝ 5000๊ฐœ์˜ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋ฅผ ํ™•๋ณดํ•˜์˜€๋‹ค.

์ˆ˜์ง‘๋œ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋Š” ๊ณ ์žฅ ์œ ํ˜•์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ ๋ฐ ์ €์žฅํ•˜์˜€์œผ๋ฉฐ, ์‹œ๊ฐ„-์˜์—ญ ํŒŒํ˜• ๋ฐ ์ฃผํŒŒ์ˆ˜-์˜์—ญ ํŠน์„ฑ ๋น„๊ต์— ํ™œ์šฉํ•˜์˜€๋‹ค. ํŠนํžˆ ๋ณธ ์‹œ์Šคํ…œ์€ ๊ณ ๊ฐ€์˜ ๊ณ„์ธก ์žฅ๋น„ ์—†์ด, ๊ฐ„๋‹จํ•œ ํ™˜๊ฒฝ๊ณผ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋งŒ์œผ๋กœ BLDC ๋ชจํ„ฐ์˜ ๊ณ ์žฅ ์ง•ํ›„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ–ฅํ›„์—๋Š” ๋‹ค์–‘ํ•œ BLDC ๋ชจํ„ฐ์™€ ๊ณ ์žฅ ์œ ํ˜•์— ์ ์šฉํ•˜์—ฌ ๋ฒ”์šฉ์ ์ธ ์ง„๋‹จ ํ”Œ๋žซํผ์œผ๋กœ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค๋งŒ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œํ•œ๋œ ํ•˜๋“œ์›จ์–ด ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋œ ๊ฒƒ์œผ๋กœ, ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ ์ ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ถ€ํ•˜ ์กฐ๊ฑด ๋ฐ ์žฅ๊ธฐ์  ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์— ๋Œ€ํ•œ ๋ณด์™„์ด ํ•„์š”ํ•˜๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ๋ฐ์ดํ„ฐ๋Š” STM32 ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ˆ˜์ง‘๋œ ์ „๋ฅ˜๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋ฉฐ, FFT๋กœ ๋ณ€ํ™˜๋œ ์ €ํ•ด์ƒ๋„(96ร—96) ์ŠคํŽ™ํŠธ๋Ÿผ์„ CNN ์ž…๋ ฅ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์ด๋Š” ๋Œ€๊ทœ๋ชจ GPU ํ™˜๊ฒฝ์ด ์•„๋‹Œ ์†Œํ˜• ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ๋Ÿ‰ CNN ์ง„๋‹จ ๊ตฌ์กฐ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์œผ๋กœ, ๊ธฐ์กด ์˜คํ”„๋ผ์ธ ๊ธฐ๋ฐ˜ ์—ฐ๊ตฌ์™€ ์ฐจ๋ณ„๋œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ ‡๊ฒŒ ์ˆ˜์ง‘๋œ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ธ์…˜ ๋‹จ์œ„๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ train/validation/test = 6:1:3 ๋น„์œจ๋กœ ๋ถ„ํ• ํ•˜์˜€๋‹ค. ํด๋ž˜์Šค๋ณ„ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋Š” ํ‘œ 1์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

ํ‘œ 1 ๋ฐ์ดํ„ฐ ๋ถ„ํฌ(์„ธ์…˜ ๋‹จ์œ„ ๋ถ„ํ• )

Table 1 Data distribution by split (session-wise)

๊ตฌ๋ถ„ ์ •์ƒ (Normal) ์ด๋ฌผ์งˆ (Paper) ๋น„๋Œ€์นญ (Asymmetric) ํ•ฉ๊ณ„
Train 60 60 21 141
Validation 10 10 3 23
Test 30 30 6 66
ํ•ฉ๊ณ„ 100 100 30 230

๊ทธ๋ฆผ 3 ๊ณ ์žฅ ์ง„๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ๋ฆ„๋„

Fig. 3 Flowchart of fault diagnosis algorithm

../../Resources/kiee/KIEE.2026.75.2.324/fig3.png

ํ‘œ 1์€ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์…‹์˜ ์„ธ์…˜ ๋‹จ์œ„ ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ์„ธ์…˜ ๋‹จ์œ„๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๋™์ผ ์„ธ์…˜์˜ ์ƒ˜ํ”Œ์ด ์„œ๋กœ ๋‹ค๋ฅธ ๋ถ„ํ• ์— ํฌํ•จ๋˜์ง€ ์•Š๋„๋ก ๋ถ„๋ฆฌํ•˜์˜€๋‹ค. ์ด ๊ธฐ๋ณธ ๋ถ„ํ• ์€ ๋ชจ๋“  ๋ชจ๋ธ ํ•™์Šต๊ณผ ํ‰๊ฐ€ ๊ณผ์ •์— ๋™์ผํ•˜๊ฒŒ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, MobileNetV2 ํ•™์Šต ์‹œ์—๋Š” ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•™์Šต ์„ธ์…˜ ๋‚ด์—์„œ๋งŒ ๊ฐ„๋‹จํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ถ”๊ฐ€๋กœ ์ ์šฉํ•˜์˜€๋‹ค. ๋ชจ๋“  ๋ชจ๋ธ์— ๋™์ผํ•œ ์ „์ฒ˜๋ฆฌ ์ ˆ์ฐจ๋ฅผ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, FFT ๋ณ€ํ™˜ ์‹œ ๋™์ผํ•œ ์œˆ๋„์šฐ ์กฐ๊ฑด๊ณผ ์ •๊ทœํ™” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๊ณ , ๋ชจ๋ธ ์ดˆ๊ธฐํ™” ๋ฐ ๋ฐ์ดํ„ฐ ์…”ํ”Œ์€ ๊ณ ์ •๋œ ์‹œ๋“œ๋กœ ์ˆ˜ํ–‰ํ•˜์—ฌ ์žฌํ˜„์„ฑ์„ ํ™•๋ณดํ•˜์˜€๋‹ค.

3. ๊ณ ์žฅ ์ง„๋‹จ ๊ฒฐ๊ณผ

3.1 ์‹œ๊ฐ„ ์˜์—ญ ์ „๋ฅ˜ ํŒŒํ˜• ๋ถ„์„ ๊ฒฐ๊ณผ

BLDC ๋ชจํ„ฐ์—์„œ ๋‚˜์˜ค๋Š” ์ „๋ฅ˜ ํŒŒํ˜•์€ ๋ชจํ„ฐ์˜ ์ƒํƒœ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜์˜จ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ •์ƒ, ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ์˜ ์„ธ ๊ฐ€์ง€ ์ƒํƒœ์˜ ์ƒํ™ฉ์—์„œ ์ „๋ฅ˜ ์„ผ์„œ์— ์ธก์ •๋œ ์‹œ๊ฐ„ ์˜์—ญ ํŒŒํ˜•์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 4 (a)๋Š” ์ •์ƒ ์ƒํƒœ์—์„œ BLDC ๋ชจํ„ฐ๊ฐ€ ๊ตฌ๋™๋  ๋•Œ์˜ ์ „๋ฅ˜ ํŒŒํ˜•์ด๋ฉฐ, X์ถ•์€ ์‹œ๊ฐ„(ms), Y์ถ•์€ ์ „๋ฅ˜(mA)๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ „๋ฅ˜ ํŒŒํ˜•์„ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ -6000mA์—์„œ 6000mA ์‚ฌ์ด์˜ ์ •ํ˜„ํŒŒ ์ƒํƒœ๋กœ ์ฃผ๊ธฐ์„ฑ์ด ๋šœ๋ ทํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 4 (b)๋Š” ๋ฒ ์–ด๋ง์— ์ด๋ฌผ์งˆ์„ ์‚ฝ์ž… ํ–ˆ์„ ๋•Œ์˜ ๋ชจํ„ฐ์˜ ์ „๋ฅ˜ ํŒŒํ˜•์ด๋ฉฐ, ์ผ๋ถ€ ๊ตฌ๊ฐ„์—์„œ ๋ฏธ์„ธํ•œ ์žก์Œ์ด ์ฆ๊ฐ€ํ•˜์ง€๋งŒ ์ •์ƒ์ƒํƒœ ๋ชจํ„ฐ ํŒŒํ˜•๊ณผ์˜ ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๋Š” ๊ฑฐ์˜ ์—†์—ˆ๋‹ค. ๊ทธ๋ฆผ 4 (c)๋Š” ๋ชจํ„ฐ์˜ ๋น„๋Œ€์นญ ๋ถ€ํ•˜๋ฅผ ๋ถ€์ฐฉํ•˜์˜€์„ ๋•Œ์˜ ์ „๋ฅ˜ ํŒŒํ˜•์ด๋ฉฐ, ๋ชจํ„ฐ์˜ ์ •์ƒ์ƒํƒœ์˜ ํŒŒํ˜•๊ณผ ๋น„๊ต ๊ฒฐ๊ณผ ์™œ๊ณก๋œ ํŒŒํ˜•์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ํŠนํžˆ ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ์กฐ๊ฑด์—์„œ๋Š” ํšŒ์ „์ถ• ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•œ ๋ชจํ„ฐ์˜ ํ† ํฌ ๋ณ€๋™์ด ๋ฐœ์ƒํ•˜๊ธฐ์— ์ „๋ฅ˜ ํŒŒํ˜•์˜ ๋Œ€์นญ์„ฑ์ด ๋ฌด๋„ˆ์ง€๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค.

๊ทธ๋ฆผ 4 ์ „๋ฅ˜ ํŒŒํ˜• (a) ์ •์ƒ์ƒํƒœ (b) ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์ƒํƒœ (c) ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ

Fig. 4 Current waveform (a) Steady state (b) Foreign body insertion failure state (c) Asymmetric load fault state

../../Resources/kiee/KIEE.2026.75.2.324/fig4.png

์ „๋ฅ˜ ํŒŒํ˜•๋งŒ์œผ๋กœ๋Š” ์ •์ƒ ์ƒํƒœ์™€ ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ์˜ ๊ตฌ๋ถ„์ด ์–ด๋ ต๋‹ค. ํ•˜์ง€๋งŒ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ์ƒํƒœ์—์„œ๋Š” ์‹œ๊ฐ์ ์œผ๋กœ๋„ ์ง„ํญ์˜ ๋น„์ •์ƒ์ ์ธ ๋ณ€๋™์ด ๋šœ๋ ทํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด๋Š” FFT๋ฅผ ํ™œ์šฉํ•œ ๋ณ€ํ™˜ ๋ฐ CNN ํ•™์Šต์— ์ ํ•ฉํ•œ ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ STFT ๊ธฐ๋ฐ˜ ์ŠคํŽ™ ํŠธ๋กœ๊ทธ๋žจ ๋ฐ์ดํ„ฐ๋Š” ์ด๋ฏธ์ง€ ํ˜•ํƒœ์˜ ํŠน์„ฑ์ด ๋šœ๋ ทํ•˜๋ฏ€๋กœ CNN์— ์ ์šฉํ•˜์˜€๊ณ , FFT ๋ณ€ํ™˜ ์‹ ํ˜ธ ๋ฐ ์ผ๋ฐ˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋Š” ์ˆœ์ฐจ์  ํŒจํ„ด์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” RNN๊ณผ CNN์œผ๋กœ ํ•™์Šตํ•˜์˜€๋‹ค. CNN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ๋ฐ ๊ตฌ์กฐ์— ๋”ฐ๋ผ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์—, ์‚ฌ์šฉ ๊ฒฝ๋Ÿ‰๋ชจ๋ธ์ธ MobileNet์„ ๋น„๊ต ๊ธฐ์ค€์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ชจ๋ธ์˜ ๊ฐ•์ ๊ณผ ํ•œ๊ณ„๋ฅผ ๋™์‹œ์— ํ™•์ธํ•œ ํ›„ ๊ฐœ์„  ๋ฐฉํ–ฅ์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ํ‘œํ˜„๊ณผ ๋ชจ๋ธ ํŠน์„ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๋น„๊ตํ•˜๊ณ  ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ด๋ ‡๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

3.2 FFT๋ฅผ ํ†ตํ•œ ์ „๋ฅ˜ ํŒŒํ˜• ๋ถ„์„ ๊ฒฐ๊ณผ

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” FFT๋ฅผ ์ ์šฉํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ์˜ ํŠน์„ฑ์„ ์ •๋Ÿ‰์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ๊ณ ์žฅ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ์— FFT๋ฅผ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ์ •์ƒ ์ƒํƒœ์™€ ๋‘ ๊ฐ€์ง€ ๊ณ ์žฅ ์ƒํƒœ ๊ฐ„ ์ฃผํŒŒ์ˆ˜ ํŠน์„ฑ์˜ ์ฐจ์ด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ทธ๋ฆผ 5 ์ „๋ฅ˜ FFT ์ŠคํŽ™ํŠธ๋Ÿผ (a) ์ •์ƒ์ƒํƒœ (b) ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์ƒํƒœ (c) ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ

Fig. 5 Current FFT spectrum (a) Steady state (b) Foreign body insertion failure state (c) Asymmetric load fault state

../../Resources/kiee/KIEE.2026.75.2.324/fig5.png

๊ทธ๋ฆผ 5๋Š” ์ •์ƒ ์ƒํƒœ์—์„œ์˜ FFT ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ฃผํŒŒ์ˆ˜ ์ „์—ญ์—์„œ ๋น„๊ต์  ์ผ์ •ํ•œ ์ง„ํญ ๋ถ„ํฌ๋ฅผ ๋ณด์ด๋ฉฐ, 50 Hz ์ดํ•˜์˜ ์ €์ฃผํŒŒ ์„ฑ๋ถ„๋งŒ์ด ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ทธ๋ฆผ 5(b)๋Š” ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์ƒํƒœ์˜ FFT ๊ฒฐ๊ณผ์ด๋ฉฐ, ์ผ๋ถ€ ๊ณ ์ฃผํŒŒ ๋Œ€์—ญ(์•ฝ 300~600 Hz)์—์„œ ์•ฝ๊ฐ„์˜ ์ง„ํญ ์ฆ๊ฐ€๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ทธ ์ฆ๊ฐ€๋Š” ์‹œ๊ฐ์ ์œผ๋กœ ๊ตฌ๋ถ„์ด ์‰ฝ์ง€ ์•Š๋‹ค. ๊ทธ๋ฆผ 5 (c)๋Š” ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ(ํšŒ์ „์ฒด ์ถ•์— ๊ธˆ์† ํด๋ฆฝ ๋ถ€์ฐฉ)์˜ FFT ๋ถ„์„ ๊ฒฐ๊ณผ์ด๋‹ค. ์ด ๊ฒฝ์šฐ์—๋Š” 400 Hz~700 Hz ๊ตฌ๊ฐ„์—์„œ ๋ช…ํ™•ํ•œ ๊ณ ์กฐํŒŒ ์„ฑ๋ถ„์ด ๋ฐ˜๋ณต์ ์œผ๋กœ ๊ด€์ฐฐ๋˜์—ˆ์œผ๋ฉฐ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜๋กœ ์ธํ•ด ์ „๋ฅ˜ ํŒŒํ˜•์ด ์™œ๊ณก๋˜๋ฉด์„œ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์—์„œ ๊ธฐ๋ณธ ์ฃผํŒŒ์ˆ˜์˜ ์ด๋™๊ณผ ์ƒˆ๋กœ์šด ๊ณ ์กฐํŒŒ ์„ฑ๋ถ„์˜ ์ถœํ˜„์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด๋Š” ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ์ƒํƒœ์˜ ์ „๋ฅ˜ ํŠน์„ฑ์„ ์ง„๋‹จํ•  ๋•Œ ์œ ํšจํ•œ ์ง€ํ‘œ๋กœ ํ™œ์šฉ๋  ๊ฐ€์น˜๊ฐ€ ์žˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ ์šฉํ•œ FFT๋Š” ๊ธฐ์กด์˜ ์‹œ๊ฐ„-์ฃผํŒŒ์ˆ˜ ํ•ด์„ ๊ธฐ๋ฒ•์ธ STFT์™€ ๋น„๊ตํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์žฅ์ ์ด ์žˆ๋‹ค. FFT๋Š” ๊ณ„์‚ฐ๋Ÿ‰์ด ์ ๊ณ  ๊ตฌํ˜„์ด ๋‹จ์ˆœํ•˜๊ธฐ์— ์‹ค์‹œ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์— ์ ํ•ฉํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  FFT ๊ฒฐ๊ณผ๋Š” ๊ณ ์ •๋œ ํฌ๊ธฐ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•˜๊ธฐ์— ๋ถ„๋ฅ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž…๋ ฅ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ์— ์šฉ์ดํ•˜๋‹ค๋Š” ์žฅ์ ๋„ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์–‘ํ•œ ๋ชจํ„ฐ ์œ ํ˜•๊ณผ ๊ณ ์ • ์กฐ๊ฑด์— ๋Œ€ํ•ด ์žฌํ•™์Šต๋งŒ์œผ๋กœ ์‰ฝ๊ฒŒ ํ™•์žฅ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ํ•œ๋งˆ๋””๋กœ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ์€ ๋ช…ํ™•ํ•œ ์ฃผํŒŒ์ˆ˜ ํ”ผํฌ ๋ถ„ํฌ ์ฐจ์ด๋กœ ์ธํ•ด ์œก์•ˆ์œผ๋กœ๋„ ๊ตฌ๋ถ„ ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ์€ ์ŠคํŽ™ํŠธ๋Ÿผ ์ƒ์—์„œ์˜ ๊ณ ์žฅ ์œ ํ˜•์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ CNN ๋ถ„๋ฅ˜๊ธฐ ์„ฑ๋Šฅ ๋ถ„์„์—์„œ๋„ ๋ฐ˜์˜๋œ๋‹ค.

3.3 CNN ํŒŒํ˜• ๋ถ„์„

์•ž์„œ ์ˆ˜์ง‘๋œ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ FFT๋ฅผ ํ†ตํ•ด ์‹œ๊ฐ„ ์˜์—ญ์—์„œ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์œผ๋กœ ๋ณ€ํ™˜ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์กฐ๊ฑด์—์„œ๋Š” ํŠน์ • ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ๋šœ๋ ทํ•œ ๊ณ ์กฐํŒŒ ์„ฑ๋ถ„์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๋‹ค๋งŒ ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์กฐ๊ฑด์—์„œ๋Š” ์ •์ƒ ์ƒํƒœ์™€์˜ ๋ช…ํ™•ํ•œ ๊ตฌ๋ถ„์ด ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.

์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” FFT๋ฅผ ํ†ตํ•œ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„์ด ๊ณ ์žฅ ์ง•ํ›„์˜ ์ „๋ฐ˜์ ์ธ ๊ฒฝํ–ฅ์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐ๋Š” ์œ ์šฉํ•˜์ง€๋งŒ, ๊ณ ์ฃผํŒŒ ์˜์—ญ์˜ ๋ฏธ์„ธํ•œ ์ง„ํญ ๋ณ€๋™์ด๋‚˜ ๊ตญ์†Œ์ ์ธ ํŒจํ„ด ์ฐจ์ด๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ํŠนํžˆ ์ด๋ฌผ์งˆ ์‚ฝ์ž…๊ณผ ๊ฐ™์€ ๊ฒฝ๋ฏธํ•œ ์ด์ƒ์€ ์ŠคํŽ™ํŠธ๋Ÿผ์ƒ์—์„œ ํ”ผํฌ ์œ„์น˜๋‚˜ ์„ธ๊ธฐ๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•˜์ง€ ์•Š์•„ ์ˆ˜๋™์ ์ธ ์‹œ๊ฐ ํŒ๋ณ„๋งŒ์œผ๋กœ๋Š” ๊ตฌ๋ถ„์ด ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ์„ธ๋ถ€์  ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๊ณ , ์ฃผํŒŒ์ˆ˜ ๋ถ„ํฌ์˜ ๋ฏธ์„ธํ•œ ๋น„์„ ํ˜• ๋ณ€ํ™”๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค.

์ด๋Ÿฌํ•œ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ, ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•ด CNN ๊ธฐ๋ฐ˜์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋ณธ ๋ชจ๋ธ์€ ์ •์ƒ์ƒํƒœ ๋ฐ ๊ณ ์žฅ ์ƒํƒœ ์‚ฌ์ด์˜ ๋ฏธ์„ธํ•œ ํŒจํ„ด ์ฐจ์ด๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋˜์—ˆ์œผ๋ฉฐ, Python ๊ธฐ๋ฐ˜์˜ ๊ฐœ๋ฐœ ํ™˜๊ฒฝ์—์„œ ๊ตฌ์ถ•๋˜๊ณ  ํ•™์Šต๋˜์—ˆ๋‹ค. BLDC ๋ชจํ„ฐ์˜ ์ •์ƒ ์ƒํƒœ์™€ ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ ์ƒํƒœ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ CNN ๋ชจ๋ธ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ํ›ˆ๋ จ:๊ฒ€์ฆ:ํ…Œ์ŠคํŠธ = 60:10:30์˜ ๋น„์œจ๋กœ ๋ถ„ํ• ํ•˜์—ฌ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ชจ๋ธ ์„ฑ๋Šฅ ํ‰๊ฐ€๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ 61๊ฐœ(Asymmetric 1, Paper 30, Normal 30)๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 6 CNN ๋ชจ๋ธ์˜ Confusion Matrix ๊ฒฐ๊ณผ

Fig. 6 Confusion Matrix Results of CNN Model

../../Resources/kiee/KIEE.2026.75.2.324/fig6.png

๊ทธ๋ฆผ 6์€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ CNN ๋ชจ๋ธ์˜ Confusion Matrix(ํ˜ผ๋™ ํ–‰๋ ฌ) ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

  • Asymmetric(๋น„๋Œ€์นญ ๋ถ€ํ•˜): ์ด 1๊ฐœ์˜ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๊ฐ€ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค.

  • Paper(์ด๋ฌผ์งˆ ์‚ฝ์ž…): ์ด 30๊ฐœ์˜ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ์ค‘ 25๊ฐœ๊ฐ€ ์ •ํ™•ํžˆ ๋ถ„๋ฅ˜๋˜์—ˆ์œผ๋‚˜, 5๊ฐœ๋Š” Asymmetric ๊ณ ์žฅ์œผ๋กœ ์ž˜๋ชป ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค.

  • Normal(์ •์ƒ ์ƒํƒœ): ์ด 30๊ฐœ์˜ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ชจ๋‘ ์ •์ƒ ์ƒํƒœ๋กœ ์ •ํ™•ํžˆ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉํ•œ CNN ๋ชจ๋ธ์€ 64ร—64 ํฌ๊ธฐ์˜ RGB ์ „๋ฅ˜ ํŒŒํ˜• ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅ์œผ๋กœ ํ•˜๋ฉฐ, 2๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต๊ณผ ReLU ํ™œ์„ฑํ™” ํ•จ์ˆ˜, MaxPooling ๊ณ„์ธต์„ ๊ฑฐ์ณ Flatten๋œ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ 2๊ฐœ์˜ ์™„์ „ ์—ฐ๊ฒฐ ๊ณ„์ธต์„ ํ†ตํ•ด 3๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ตฌ์กฐ์ด๋‹ค. ๋ชจ๋ธ์€ Adam ์˜ตํ‹ฐ๋งˆ์ด์ €๋กœ 50 epoch ๋™์•ˆ ํ•™์Šต๋˜์—ˆ์œผ๋ฉฐ, ์†์‹ค ํ•จ์ˆ˜๋Š” cross entropy๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค.

CNN์€ ๋ช…์‹œ์  ํŠน์ง• ์ถ”์ถœ ๊ณผ์ • ์—†์ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ์ค‘์š”ํ•œ ํŒจํ„ด์„ ์ž๋™ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. CNN ๊ตฌ์กฐ์™€ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ํšŒ์ „์ฒด ๋ฐ ๋ชจํ„ฐ ๊ณ ์žฅ ์ง„๋‹จ ๋ถ„์•ผ์˜ ์„ ํ–‰ ์—ฐ๊ตฌ์—์„œ ์•ˆ์ •์„ฑ๊ณผ ์„ฑ๋Šฅ์ด ๊ฒ€์ฆ๋œ ์„ค๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ŠคํŽ™ํŠธ๋กœ๊ทธ๋žจ ๋ถ„์„์—์„œ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด Convโ€“Convโ€“Poolโ€“Poolโ€“FCโ€“Softmax ๊ณ„์ธต ๊ตฌ์กฐ์™€ 3ร—3 ์ปค๋„, 32โ†’64 ํ•„ํ„ฐ ์ฆ๊ฐ€๋ฅผ ์„ค์ •์„ ์ ์šฉํ•˜์˜€๋‹ค.

3.4 ๊ณ ์žฅ ์ง„๋‹จ ๊ฒฐ๊ณผ ๋ถ„์„

์‹คํ—˜ ๊ฒฐ๊ณผ, ์ •์ƒ ์ƒํƒœ์™€ ๋น„๋Œ€์นญ ๊ณ ์žฅ์€ ๊ฐ๊ฐ์˜ ์ „๋ฅ˜ ํŒŒํ˜• ๋ฐ ์ฃผํŒŒ์ˆ˜ ํŠน์„ฑ์ด ๋ช…ํ™•ํ•˜์—ฌ ๋†’์€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ํŠนํžˆ ์ •์ƒ ์ƒํƒœ์˜ ์ „๋ฅ˜ ํŒŒํ˜•์€ 100%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์•ˆ์ •์ ์ด๊ณ  ๊ทœ์น™์ ์ธ ํŠน์„ฑ์„ ๋ณด์˜€๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ธ๋‹ค.

๋น„๋Œ€์นญ ํšŒ์ „ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋Š” FFT ๋ถ„์„ ๋‹จ๊ณ„์—์„œ ํŠน์ • ๊ณ ์ฃผํŒŒ ๋Œ€์—ญ์—์„œ ๋šœ๋ ทํ•œ ์ง„ํญ ์ฆ๊ฐ€๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ CNN ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ ๋ถ„๋ฅ˜ ๊ณผ์ •์—๋„ ๋ฐ˜์˜๋˜์–ด ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์˜€๋‹ค. ์ด๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์—์„œ๋„ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฅ˜ ๊ฐ€๋Šฅํ•œ ๊ณ ์žฅ ์œ ํ˜•์ž„์„ ์‹œ์‚ฌํ•œ๋‹ค.

๋ฐ˜๋ฉด, ์ด๋ฌผ์งˆ ์‚ฝ์ž… ๊ณ ์žฅ์€ ์ผ๋ถ€ ๋ฐ์ดํ„ฐ๊ฐ€ ๋น„๋Œ€์นญ ๊ณ ์žฅ์œผ๋กœ ์˜ค๋ถ„๋ฅ˜ ๋˜์—ˆ๋Š”๋ฐ, ์ด๋Š” ์ด๋ฌผ์งˆ ์‚ฝ์ž… ์‹œ ์ „๋ฅ˜ ํŒŒํ˜•์˜ ๋ณ€ํ™”๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋ฏธ์„ธํ•˜๊ณ , ๊ทธ ํŒจํ„ด์ด ๋น„๋Œ€์นญ ๊ณ ์žฅ ์กฐ๊ฑด๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ถ„์„๋œ๋‹ค. ํ•˜์ง€๋งŒ FFT ๋ถ„์„์—์„œ ์ด๋ฌผ์งˆ ๊ณ ์žฅ์€ ํŠน์ง•์  ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์ด ๋šœ๋ ทํ•˜์ง€ ์•Š์•˜๋˜ ๊ฒƒ์— ๋ฐ˜ํ•ด, CNN ๋ชจ๋ธ์—์„œ๋Š” ์–ด๋А ์ •๋„ ๋ถ„๋ฅ˜ ๊ฐ€๋Šฅํ•œ ๊ณ ์žฅ ์œ ํ˜•์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.

๊ฒฐ๊ณผ์ ์œผ๋กœ, ์ „์ฒด 91.80%์˜ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•œ ๋ณธ CNN ๋ชจ๋ธ์€ ์ „๋ฅ˜ ํŒŒํ˜• ๋ฐ์ดํ„ฐ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ BLDC ๋ชจํ„ฐ์˜ ์ •์ƒ ๋ฐ ์ฃผ์š” ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ํ–ฅํ›„ ์ •ํ™•๋„๋ฅผ ๋†’์ด๊ณ , ๋ณด๋‹ค ์ •๋ฐ€ํ•œ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ ํ™•๋ณด, ๊ณ ์žฅ ์กฐ๊ฑด์˜ ํ™•์žฅ, ์ถ”๊ฐ€ ์„ผ์„œ ๋ฐ์ดํ„ฐ์˜ ํ™œ์šฉ ๋“ฑ์ด ํ•„์š”ํ•˜๋‹ค.

3.5 CNN๊ณผ RNN ๋ฐ FFT-CNN ๋ชจ๋ธ ์„ฑ๋Šฅ ๋น„๊ต

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BLDC ๋ชจํ„ฐ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•ด ์ ์šฉํ•œ CNN๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๋Š” ๋™์‹œ์—, ๋‹ค๋ฅธ ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ ๋ฐ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ํ˜•ํƒœ์™€์˜ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋น„๊ต ๋Œ€์ƒ์€ (1)์ „๋ฅ˜ ํŒŒํ˜•์„ ์ž…๋ ฅ์œผ๋กœ ํ•œ CNN, (2) ๋™์ผํ•œ ๋ฐ์ดํ„ฐ๋ฅผ RNN(Recurrent Neural Network)์— ์ ์šฉํ•œ ๋ชจ๋ธ, (3) FFT๋ณ€ํ™˜ ์ŠคํŽ™ํŠธ๋Ÿผ์„ CNN ์ž…๋ ฅ์œผ๋กœ ํ™œ์šฉํ•œ ๋ชจ๋ธ(FFT-CNN)์ด๋‹ค.

๋จผ์ €, CNN๊ณผ RNN์˜ ์„ฑ๋Šฅ ๋น„๊ต ๊ฒฐ๊ณผ CNN์€ ์ •์ƒ(Normal), ์ด๋ฌผ์งˆ ์‚ฝ์ž…(Paper), ๋น„๋Œ€์นญ ๋ถ€ํ•˜(Asymmetric) ์„ธ ๊ฐ€์ง€ ์ƒํƒœ ๋ชจ๋‘์—์„œ ์•ˆ์ •์ ์ธ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด RNN์€ ๋ชจ๋“  ์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ Paper๋กœ ์˜ค๋ถ„๋ฅ˜ํ•˜์˜€๊ณ , ๋น„๋Œ€์นญ๋ถ€ํ•˜๋Š” ์ „ํ˜€ ์ธ์‹ํ•˜์ง€ ๋ชปํ•ด ์ „์ฒด ์ •ํ™•๋„๊ฐ€ 30%์— ๋ถˆ๊ณผํ•˜์˜€๋‹ค. ์ด๋Š” BLDC ์ „๋ฅ˜ ์‹ ํ˜ธ์˜ ๋ถˆ๊ทœ์น™์„ฑ๊ณผ ์žก์Œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด, ์‹œ๊ณ„์—ด ๊ตฌ์กฐ๋ฅผ ์ค‘์‹œํ•˜๋Š” RNN๋ณด๋‹ค ํŒจํ„ด ์ธ์‹์— ๊ฐ•์ ์„ ๊ฐ€์ง„ CNN์ด ๋ฐ์ดํ„ฐ ํŠน์„ฑ์— ๋ถ€ํ•ฉํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ํŒ๋‹จ๋œ๋‹ค.

๋‹ค์Œ์œผ๋กœ, ๋™์ผํ•œ CNN ๊ตฌ์กฐ์— ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ „๋ฅ˜ํŒŒํ˜•๊ณผ FFT ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ํ•™์Šตํ•œ ๊ฒฐ๊ณผ์—์„œ๋„ ๋ช…ํ™•ํ•œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „๋ฅ˜ ํŒŒํ˜• ๊ธฐ๋ฐ˜ CNN์€ ์ „์ฒด ์ •ํ™•๋„ 90.0%๋ฅผ ๊ธฐ๋กํ•˜์˜€์œผ๋ฉฐ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ํด๋ž˜์Šค์—์„œ๋Š” Precision๊ณผ Recall ๋ชจ๋‘ 1.0์˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋ฐ˜๋ฉด FFT-CNN์€ ์ „์ฒด ์ •ํ™•๋„๊ฐ€ 50.0์ด๊ณ  Paper ํด๋ž˜์Šค์—์„œ Recall์ด 1.0 ์ด์ง€๋งŒ Precision์ด ๋‚ฎ์•„ ๋‹ค๋ฅธ ํด๋ž˜์Šค๋ฅผ Paper๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ •์ƒ ํด๋ž˜์Šค๋Š” Precision 1.0์ด์ง€๋งŒ Recall์ด 0.25์— ๋ถˆ๊ณผํ•ด ๋Œ€๋ถ€๋ถ„์˜ ์ •์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ๋†“์ณค์œผ๋ฉฐ, ๋น„๋Œ€์นญ ๋ถ€ํ•˜๋Š” Precision๊ณผ Recall ๋ชจ๋‘ 0์œผ๋กœ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ์ด๋Š” FFT ์ŠคํŽ™ํŠธ๋Ÿผ์€ ์ „๋ฅ˜ ์‹ ํ˜ธ์˜ ์‹œ๊ฐ„-์ฃผํŒŒ์ˆ˜ ํŠน์„ฑ์„ ๋“œ๋Ÿฌ๋‚ด์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ฐ์ดํ„ฐ์—์„œ๋Š”, ๊ณ ์žฅ ํŠน์œ ์˜ ์ด์ƒ ํŒจํ„ด์ด ์ถฉ๋ถ„ํžˆ ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ถ„์„๋œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ๋ฐ์ดํ„ฐ์…‹์—์„œ RNN์€ 30%๋กœ ๋‚ฎ์€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, FFT-CNN ๋ชจ๋ธ์€ ํŠน์ • ํด๋ž˜์Šค์— ์น˜์šฐ์น˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ฐ˜๋ฉด, ์ „๋ฅ˜ ํŒŒํ˜• CNN์€ ์ „๋ฐ˜์ ์œผ๋กœ ์•ˆ์ •์ ์ด๊ณ  ์ผ๊ด€๋œ ๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ, ๋ณธ ์—ฐ๊ตฌ ๋ชฉ์ ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๋ชจ๋ธ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.

3.6 ์ƒ์šฉ ๊ฒฝ๋Ÿ‰๋ชจ๋ธ๊ณผ์˜ ๋น„๊ต (MobileNet)

๋ณธ ์ ˆ์—์„œ๋Š” ์ œ์•ˆ ๋ชจ๋ธ๊ณผ ์ƒ์šฉ ๊ฒฝ๋Ÿ‰๋ชจ๋ธ(MobileNetV2)์„ ๋™์ผํ•œ ํ•™์Šต ์„ค์ •์—์„œ ๋น„๊ตํ•˜์˜€๋‹ค. ์ƒ์šฉ ๊ฒฝ๋Ÿ‰๋ชจ๋ธ์€ ๋‹ค์–‘ํ•˜๊ฒŒ ์žˆ์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ฐ”์ผ ํ™˜๊ฒฝ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ๊ฒฝ๋Ÿ‰ํ™”์™€ ํšจ์œจ์„ฑ์ด ๊ฒ€์ฆ๋œ MobileNet์„ ๋น„๊ต ๋Œ€์ƒ์œผ๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์ž…๋ ฅ ํ•ด์ƒ๋„๋Š” 96ร—96์œผ๋กœ ํ†ต์ผํ•˜์˜€๊ณ , ๋ฐ์ดํ„ฐ๋Š” train/val/test=60/10/30์˜ ํ”„๋ฆฌ์Šคํ”Œ๋ฆฟ ๊ตฌ์กฐ๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํด๋ž˜์Šค ๊ฐ€์ค‘์น˜(Asym ๊ฐ€์ค‘์น˜ 2.33)์™€ ๊ฐ„๋‹จํ•œ ์ฆ๊ฐ•(RandomTranslation, GaussianNoise, RandomContrast)์„ ์ ์šฉํ•˜์˜€๋‹ค. MobileNetV2๋Š” ImageNet ์‚ฌ์ „ํ•™์Šต ๊ฐ€์ค‘์น˜๋ฅผ ์‚ฌ์šฉํ•œ ํ›„ ํ—ค๋“œ ํ•™์Šต์„ ๊ฑฐ์ณ ์ผ๋ถ€ ์ธต๋งŒ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 7, ๊ทธ๋ฆผ 8์€ ๋‘ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ํ˜ผ๋™ํ–‰๋ ฌ์„ ์š”์•ฝํ•œ๋‹ค. MobileNetV2๋Š” ์ •ํ™•๋„ 83.33%, ๋งคํฌ๋กœ F1 0.794๋ฅผ ๋‹ฌ์„ฑํ•˜์—ฌ ์ œ์•ˆ CNN(์ •ํ™•๋„ 54.55%, ๋งคํฌ๋กœ F1 0.521) ๋Œ€๋น„ ์ „๋ฐ˜์ ์œผ๋กœ ์šฐ์ˆ˜ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด ์ง€์—ฐ๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ์ œ์•ˆ CNN์ด ๊ฐ๊ฐ 2.059 ms/์ด๋ฏธ์ง€, 1.185M์œผ๋กœ ๋” ์ž‘์•„, ์‹ค์‹œ๊ฐ„ ์ž„๋ฒ ๋””๋“œ ํ™˜๊ฒฝ์—์„œ์˜ ์ด์ ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ํŠนํžˆ Asym ํด๋ž˜์Šค์˜ ์žฌํ˜„์œจ์€ ๋‘ ๋ชจ๋ธ ๋ชจ๋‘ 1.0์œผ๋กœ ๊ฐœ์„ ๋˜์–ด, ํด๋ž˜์Šค ๊ฐ€์ค‘์น˜ยท์ฆ๊ฐ•์ด ์†Œ์ˆ˜ ํด๋ž˜์Šค ์ธ์ง€์— ํšจ๊ณผ์ ์ž„์„ ๋ณด์ธ๋‹ค.

MobileNetV2(Imagenet+๋ฏธ์„ธ ์กฐ์ •)๋Š” ๋ณธ ์ ˆ์˜ ํ†ต์ผ ์„ค์ •์—์„œ ์ •ํ™•๋„ 83.33%, ๋งคํฌ๋กœ F1 0.794๋กœ ์ œ์•ˆ CNN(54.55%, 0.521) ๋Œ€๋น„ ์šฐ์ˆ˜ํ•˜์˜€๋‹ค. ๋ฐ˜๋ฉด ์ œ์•ˆ CNN์€ ์ง€์—ฐ 2.059 ms/img, ํŒŒ๋ผ๋ฏธํ„ฐ 1.185M์œผ๋กœ ๊ฒฝ๋Ÿ‰ยท์‹ค์‹œ๊ฐ„์„ฑ์—์„œ ์žฅ์ ์„ ๋ณด์˜€๋‹ค. ์ด๋Š” ์ ์šฉ ํ™˜๊ฒฝ(์ •ํ™•๋„ ์šฐ์„  vs ์‹ค์‹œ๊ฐ„ ์ œ์•ฝ)์— ๋”ฐ๋ฅธ ๋ชจ๋ธ ์„ ํƒ ๊ธฐ์ค€์„ ์ œ์‹œํ•œ๋‹ค. ์ •ํ™•๋„๋ฅผ ์šฐ์„ ํ•œ๋‹ค๋ฉด MobileNetV2๊ฐ€ ์œ ๋ฆฌํ•˜๊ฒ ์ง€๋งŒ, ํ˜„์žฅ์—์„œ์˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋”ฐ์ง€๋ฉด CNN์ด ์œ ๋ฆฌํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

๋ณธ ๋…ผ๋ฌธ 3.3์ ˆ์—์„œ ๋ณด๊ณ ํ•œ CNN ์ •ํ™•๋„ 91.80%๋Š” ์›๋ณธ ์ „์ฒ˜๋ฆฌยท์ž…๋ ฅ ํฌ๊ธฐ ๋ฐ ๋ฐ์ดํ„ฐ ๋ถ„ํ•  ์กฐ๊ฑด์—์„œ ํš๋“ํ•œ ๊ฐ’์ด๋‹ค. ๋ฐ˜๋ฉด ๋ณธ ์ ˆ์˜ CNN์€ ์ƒ์šฉ ๋ชจ๋ธ๊ณผ์˜ ๊ณต์ •ํ•œ ๋น„๊ต๋ฅผ ์œ„ํ•ด ์ž…๋ ฅ 96ร—96, ํด๋ž˜์Šค ๊ฐ€์ค‘์น˜ยท์ฆ๊ฐ• ์ ์šฉ ๋“ฑ ํ†ต์ผ๋œ ์„ค์ •์—์„œ ์žฌํ•™์Šตํ•œ ๊ธฐ์ค€์„ ์ด๋‹ค.

๋”ฐ๋ผ์„œ ์ ˆ ๊ฐ„ ์ˆ˜์น˜๋Š” ๋‹ค๋ฅด๋‹ค. ๋ณธ ์ ˆ์˜ ๊ฒฐ๊ณผ๋Š” ๋™์ผ ์กฐ๊ฑด์—์„œ์˜ ์ƒ๋Œ€ ๋น„๊ต์— ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. CNN๊ณผ MobileNetV2์˜ ์ƒ๋Œ€์  ์žฅ๋‹จ์ ์„ ๋™์ผ ์กฐ๊ฑด์—์„œ ์ง์ ‘ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ๋ชจ๋ธ์ด ์–ด๋–ค ํ™˜๊ฒฝ์—์„œ ๋” ์ ํ•ฉํ•œ์ง€๋ฅผ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ตฌ์ฒด์ ์ธ ์„ฑ๋Šฅ ์ฐจ์ด๋Š” ์•„๋ž˜์˜ ํ˜ผ๋™ ํ–‰๋ ฌ๊ณผ ํ‘œ๋ฅผ ํ†ตํ•ด ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๋น„๊ต๋Š” ๊ฒฝ๋Ÿ‰ ๊ตฌ์กฐ์™€ ์‚ฌ์ „ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๊ฐ„์˜ ํŠน์„ฑ์„ ๋Œ€๋น„ํ•ด ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ฑฐ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ๊ทธ๋ฆผ๊ณผ ํ‘œ๋ฅผ ํ†ตํ•ด ๊ฐ ํด๋ž˜์Šค๋ณ„ ์žฌํ˜„์œจ๊ณผ ๊ท ํ˜•์„ฑ์„ ์ง๊ด€์ ์œผ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

์ด๋Ÿฌํ•œ ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ๋‹จ์ˆœํ•œ ์ •ํ™•๋„ ์ค‘์‹ฌ์˜ ํ‰๊ฐ€๋ฅผ ๋„˜์–ด, ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜์™€ ์ถ”๋ก  ์ง€์—ฐ ์‹œ๊ฐ„์„ ํฌํ•จํ•œ โ€˜์ •ํ™•๋„โ€“์ž์›โ€“์ง€์—ฐโ€™ 3์ฐจ์› ์ง€ํ‘œ ์ƒ์—์„œ ๋ชจ๋ธ์˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ•จ๊ป˜ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ฐ ๋ชจ๋ธ์ด ์ ์œ ํ•˜๋Š” ์œ„์น˜๋ฅผ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์„ฑ ํ”„๋Ÿฐํ‹ฐ์–ด(Real-time Applicability Frontier)๋กœ ์ •์˜ํ•˜์˜€๋‹ค. CNN์ด MobileNetV2 ๋Œ€๋น„ ์ •ํ™•๋„๋Š” ๋‹ค์†Œ ๋‚ฎ์ง€๋งŒ, ์ž์› ํšจ์œจ์„ฑ๊ณผ ์ง€์—ฐ ๋ฉด์—์„œ๋Š” ์šฐ์œ„์— ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 7 CNN ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ

Fig. 7 Confusion matrix of CNN-based classifier (96ร—96, with Data augmentation)

../../Resources/kiee/KIEE.2026.75.2.324/fig7.png

๊ทธ๋ฆผ 8 MobileNetV2 ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ํ˜ผ๋™ ํ–‰๋ ฌ

Fig. 8 Confusion matrix of MobileNetV2 (96ร—96, with Data augmentation)

../../Resources/kiee/KIEE.2026.75.2.324/fig8.png

ํ‘œ 2 CNN ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์™€ MobileNetV2 ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์„ฑ๋Šฅ ๋น„๊ต

Table 2 Performance Comparison between CNN-based Classifier and MobileNetV2-based Classifier

๋ชจ๋ธ ์ •ํ™•๋„ (%) ๋งคํฌ๋กœ F1 Normal ์žฌํ˜„์œจ Paper ์žฌํ˜„์œจ Asymmetric ์žฌํ˜„์œจ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜ (M) ์ง€์—ฐ ์‹œ๊ฐ„ (ms/img)
CNN ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ 54.55 0.521 0.867 0.133 1.000 1.185 2.059
MobileNetV2 ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ 83.33 0.794 0.900 0.733 1.000 2.340 5.381

ํ‘œ 2์—์„œ ๋ณด๋“ฏ, MobileNetV2๋Š” NormalยทPaperยทAsym ๋ชจ๋“  ํด๋ž˜์Šค์—์„œ ์ œ์•ˆ CNN ๋Œ€๋น„ ๊ท ํ˜• ์žกํžŒ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ํŠนํžˆ Paper ํด๋ž˜์Šค ์žฌํ˜„์œจ์ด 0.133์—์„œ 0.733์œผ๋กœ ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. Asym ํด๋ž˜์Šค๋Š” ๋‘ ๋ชจ๋ธ ๋ชจ๋‘ ์žฌํ˜„์œจ 1.000์„ ๋‹ฌ์„ฑํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ํด๋ž˜์Šค ๊ฐ€์ค‘์น˜(2.33)์™€ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•(RandomTranslation, GaussianNoise, RandomContrast)์˜ ์ ์šฉ์ด ์ ์€ ์ˆ˜์˜ ํด๋ž˜์Šค ์ธ์ง€ ์„ฑ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜์˜€์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ํ˜ผ๋™ํ–‰๋ ฌ ๋ถ„์„ ๊ฒฐ๊ณผ, CNN์€ Normal ํด๋ž˜์Šค์—์„œ ๋†’์€ ์žฌํ˜„์œจ(0.867)์„ ๋ณด์˜€์ง€๋งŒ Paper ํด๋ž˜์Šค์—์„œ ๊ทน๋„๋กœ ๋‚ฎ์€ ์žฌํ˜„์œจ(0.133)์„ ๊ธฐ๋กํ•˜๋ฉฐ ์˜ˆ์ธก์ด ํŠน์ • ํด๋ž˜์Šค์— ํŽธํ–ฅ๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ฐ˜๋ฉด MobileNetV2๋Š” Normal(0.900)๊ณผ Paper(0.733) ๋ชจ๋‘์—์„œ ์•ˆ์ •์ ์ธ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋ณด์˜€์œผ๋ฉฐ, ์˜ค๋ถ„๋ฅ˜๋Š” ์ฃผ๋กœ Normal๊ณผ Paper ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์ด๋Š” ๋‘ ํด๋ž˜์Šค์˜ ์ „๋ฅ˜ ํŒŒํ˜• ์ŠคํŽ™ํŠธ๋Ÿผ ํŠน์„ฑ์ด ์œ ์‚ฌํ•ด ๊ฒฐ์ • ๊ฒฝ๊ณ„๊ฐ€ ํ˜ผ๋™๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์œผ๋กœ ๋ณด์ธ๋‹ค.

MobileNetV2๋Š” ๋†’์€ ์ •ํ™•๋„์™€ F1-score๋ฅผ ๋„์–ด, ์ •ํ™•๋„๊ฐ€ ์ค‘์š”ํ•œ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•˜๋‹ค. ๋ฐ˜๋ฉด, CNN์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ 1.185M, ์ถ”๋ก  ์ง€์—ฐ์ด 2.059 ms/img๋กœ ๊ฒฝ๋Ÿ‰์„ฑ๊ณผ ์‹ค์‹œ๊ฐ„์„ฑ์—์„œ ๋šœ๋ ทํ•œ ์žฅ์ ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ, ์ •ํ™•๋„๊ฐ€ ์ ˆ๋Œ€์ ์œผ๋กœ ์ค‘์š”ํ•œ ํ™˜๊ฒฝ์—์„œ๋Š” MobileNetV2๋ฅผ, ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ์š”๊ตฌ๋˜๋Š” ์ž„๋ฒ ๋””๋“œ ํ™˜๊ฒฝ์—์„œ๋Š” ์ œ์•ˆ CNN์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ํ•ฉ๋ฆฌ์ ์ผ ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด, ๋™์ผ ์กฐ๊ฑด์—์„œ์˜ ์ƒ๋Œ€ ์„ฑ๋Šฅ๋ฟ ์•„๋‹ˆ๋ผ ์ ์šฉ ํ™˜๊ฒฝ๋ณ„ ๋ชจ๋ธ ์„ ํƒ ๊ธฐ์ค€์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

MobileNetV2๋Š” ์‚ฌ์ „ ํ•™์Šต ๊ฐ€์ค‘์น˜์™€ ๊นŠ์€ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋•๋ถ„์— ์ •ํ™•๋„ ๋ฉด์—์„œ ์šฐ์„ธํ•˜์˜€์œผ๋‚˜, ์ถ”๋ก  ์ง€์—ฐ๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋” ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๊ฒฝ๋Ÿ‰ ์ž„๋ฒ ๋””๋“œ ํ™˜๊ฒฝ์—๋Š” ๋ถ€๋‹ด์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์ œ์•ˆ CNN์€ ์ •ํ™•๋„๊ฐ€ ๋‹ค์†Œ ๋‚ฎ๋”๋ผ๋„ ์ง€์—ฐ 2.059 ms/img, ํŒŒ๋ผ๋ฏธํ„ฐ 1.185M์œผ๋กœ, ์ „๋ ฅยท๋ฉ”๋ชจ๋ฆฌ ์ œ์•ฝ์ด ์žˆ๋Š” ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์—์„œ ๋ณด๋‹ค ์ ํ•ฉํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์‹ค์‹œ๊ฐ„ ์ œ์•ฝ์ด ์žˆ๋Š” ์‚ฐ์—…์šฉ IoT ๋””๋ฐ”์ด์Šค ๋“ฑ์—์„œ๋Š” ์ œ์•ˆ CNN์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ํ•ฉ๋ฆฌ์ ์ด๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ 3.3์ ˆ์—์„œ ์„œ์ˆ ๋œ CNN ๋ชจ๋ธ์€ ์›๋ž˜ 64ร—64 ์ž…๋ ฅ ํฌ๊ธฐ์— ์ตœ์ ํ™”๋œ ๊ฒฝ๋Ÿ‰ ๊ตฌ์กฐ๋กœ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, MobileNetV2์™€์˜ ๊ณต์ •ํ•œ ๋น„๊ต๋ฅผ ์œ„ํ•ด ์ž…๋ ฅ ํฌ๊ธฐ๋ฅผ 96ร—96์œผ๋กœ ํ™•๋Œ€ํ•˜์ž ์ •ํ™•๋„๊ฐ€ 91.8%์—์„œ 54.55%๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด๋Š” ์ž…๋ ฅ ํฌ๊ธฐ ์ฆ๊ฐ€๋กœ ์ธํ•ด ํŠน์ง• ์ฐจ์›์ด ์ปค์ง„ ๋ฐ˜๋ฉด, ์–•์€ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋กœ๋Š” ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•˜์ง€ ๋ชปํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ๋ฐ์ดํ„ฐ์…‹ ๊ทœ๋ชจ ๋ฐ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ์ €ํ•˜๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ํŠนํžˆ Asym ํด๋ž˜์Šค์˜ ํ‘œ๋ณธ ๋ถ€์กฑ์€ ์„ฑ๋Šฅ ํ•˜๋ฝ์— ํฌ๊ฒŒ ์ž‘์šฉํ•˜์˜€๋‹ค. ์ด์— ๋ฐ˜ํ•ด MobileNetV2๋Š” ๋™์ผํ•œ ์ž…๋ ฅ ์กฐ๊ฑด์—์„œ๋„ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์ธ ๊ฒƒ์€ ๊ตฌ์กฐ์  ๊นŠ์ด์™€ ์ „์ด ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๊ฐ•๊ฑด์„ฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ œ์•ˆ ๋ชจ๋ธ์€ ์†Œ๊ทœ๋ชจ ๋ฐ์ดํ„ฐ์™€ ์ €ํ•ด์ƒ๋„ ์ž…๋ ฅ ํ™˜๊ฒฝ์—์„œ ํšจ์œจ์ ์ธ ์žฅ์ ์„ ๊ฐ€์ง€์ง€๋งŒ, ๋ฐ์ดํ„ฐ์…‹ ๊ทœ๋ชจ ํ™•๋Œ€์™€ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ณด์™„์ด ํ•„์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ CNN ๋ชจ๋ธ์€ ์–•์€ ๊ณ„์ธต ๊ตฌ์กฐ(2๊ฐœ์˜ ํ•ฉ์„ฑ๊ณฑ ๊ณ„์ธต)์™€ ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ „์ œ๋กœ ์„ค๊ณ„๋˜์–ด, 64ร—64 ์ž…๋ ฅ ํฌ๊ธฐ์—์„œ๋Š” ํšจ์œจ์ ์œผ๋กœ ํŠน์ง•์„ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ž…๋ ฅ ํฌ๊ธฐ๋ฅผ 96ร—96์œผ๋กœ ํ™•์žฅํ•˜๋ฉด์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋Œ€๋น„ ํ•™์Šตํ•ด์•ผ ํ•˜๋Š” feature map์˜ ๋ณต์žก๋„๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜์˜€๊ณ , ๋ฐ์ดํ„ฐ์…‹์˜ ์ ˆ๋Œ€์  ํฌ๊ธฐ(ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ์•ฝ 120๊ฐœ)์™€ ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋กœ ์ธํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ ๊ฒƒ์œผ๋กœ ํ•ด์„๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๊ฒฝ๋Ÿ‰ CNN ๋ชจ๋ธ์ด ๋ฐ์ดํ„ฐ ํฌ๊ธฐ ๋ฐ ํ•ด์ƒ๋„ ๋ณ€ํ™”์— ๋ฏผ๊ฐํ•จ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ํ–ฅํ›„ ๋” ๊นŠ์€ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋‚˜ ๋ฐ์ดํ„ฐ ๋ณด๊ฐ•(data augmentation)์ด ํ•„์š”ํ•จ์„ ์‹œ์‚ฌํ•œ๋‹ค.

ํ‘œ 3 CNN, RNN, FFT-CNN ๋ฐ MobileNetV2 ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์„ฑ๋Šฅ ๋น„๊ต(์ •ํ™•๋„, ์ •๋ฐ€๋„, ์žฌํ˜„์œจ, Macro F1)

Table 3 Comparison of classification performance among CNN, RNN, FFT-CNN, and MobileNetV2 (Accuracy, Precision, Recall, and Macro F1)

๋ชจ๋ธ Accuracy (%) Precision (macro) Recall (macro) macro F1
CNN 91.80 0.933 0.917 0.915
FFT-CNN 50.00 0.481 0.417 0.338
RNN 30.00 0.111 0.250 0.154
MobileNet2 83.33 0.770 0.878 0.794

ํ‘œ 3์€ ๋ฐ์ดํ„ฐ ๋ถ„ํ• ๊ณผ ์ „์ฒ˜๋ฆฌ/์ž…๋ ฅ ์กฐ๊ฑด์—์„œ ๊ฐ ๋ชจ๋ธ์˜ ์ •ํ™•๋„, macro-Precision, macro-Recall, macro-F1์„ ์š”์•ฝํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. ๊ฐ ๋ชจ๋ธ์€ ๋™์ผํ•œ ๋ถ„ํ•  ๋ฐ ์ „์ฒ˜๋ฆฌ ์กฐ๊ฑดํ•˜์—์„œ ๋ฐ˜๋ณต์ ์œผ๋กœ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์‹คํ—˜ ๊ฐ„ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ๋ฏธ๋ฏธํ•˜์—ฌ ๋Œ€ํ‘œ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. MobileNetV2๋Š” ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„(83.33%)์™€ macro-F1(0.794)์„ ๋ณด์˜€๊ณ , ํด๋ž˜์Šค ๋ถˆ๊ท ํ˜•(2:2:1)์„ ๊ณต์ •ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ์ง€ํ‘œ๋Š” macro ํ‰๊ท ์œผ๋กœ ๋ณด๊ณ ํ•˜์˜€๋‹ค.

3.7 MCU ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ๋™์ž‘ ๊ฐ€๋Šฅ์„ฑ ํ‰๊ฐ€

๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์•ˆํ•œ BLDC ๋ชจํ„ฐ ๊ณ ์žฅ ์ง„๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ €๋น„์šฉ MCU ํ™˜๊ฒฝ์—์„œ๋„ ์‹ค์‹œ๊ฐ„ ์šด์šฉ ๊ฐ€๋Šฅํ•œ์ง€๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, STM32 L432KC ๊ธฐ๋ฐ˜์˜ ์ž„๋ฒ ๋””๋“œ ์ถ”๋ก  ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ์ด ์‹ค์ œ ์‚ฐ์—… ํ˜„์žฅ์— ์ ์šฉ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฟ ์•„๋‹ˆ๋ผ MCU์˜ ๋ฉ”๋ชจ๋ฆฌ ์ œ์•ฝ, ์—ฐ์‚ฐ ์†๋„, ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•ด์•ผ ํ•œ๋‹ค. ํŠนํžˆ, ์„ผ์„œ๋กœ๋ถ€ํ„ฐ 2 kHz ์ฃผ๊ธฐ๋กœ ์ž…๋ ฅ๋˜๋Š” ์ „๋ฅ˜ ์‹ ํ˜ธ๋ฅผ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ, 1 ์ƒ˜ํ”Œ์˜ ์ถ”๋ก  ์ง€์—ฐ์ด 5 ms ์ดํ•˜์ผ ๋•Œ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๊ฐ€ ๊ฐ€๋Šฅ(โ‰ฅ 200 Hz) ํ•œ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์กฐ๊ฑด์„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ ๋ชจ๋ธ์˜ Flash, RAM, ํ‰๊ท  ์ „๋ฅ˜ ๋ฐ ์ถ”๋ก  ์ง€์—ฐ์„ ์ธก์ •ํ•˜์—ฌ ํ‘œ 4์— ์š”์•ฝํ•˜์˜€๋‹ค.

ํ‘œ 4 MCU ๊ธฐ๋ฐ˜ ์ถ”๋ก  ๋ฆฌ์†Œ์Šค ๋ฐ ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ ์š”์•ฝ

Table 4 Summary of inference resource usage and real-time performance on MCU

๋ชจ๋ธ Flash (KB) RAM (KB) ์—ฐ์‚ฐ๋Ÿ‰ (MMAC) ์ถ”๋ก  ์ง€์—ฐ (ms) ํ‰๊ท  ์ „๋ฅ˜ (mA) ์‹ค์‹œ๊ฐ„ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ
CNN 182.5 58.4 8.0 2.06 41.2 ์ถฉ๋ถ„ํ•จ (โ‰ˆ 2โ€“5 Hz)
FFT-CNN 187.9 60.8 9.5 2.19 43.5 ์ถฉ๋ถ„ํ•จ (โ‰ˆ 2โ€“5 Hz)
RNN 195.7 61.3 12.0 2.18 43.0 ์ œํ•œ์  (โ‰ˆ 2 Hz)
MobileNetV2 321.4 72.6 30.0 6.37 49.8 ๋ถ€๋ถ„์  (โ‰ˆ 1 Hz)

ํ‘œ 4์—์„œ ์ œ์‹œ๋œ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด, ์ œ์•ˆ CNN๊ณผ FFT-CNN์€ ํ‰๊ท  ์ถ”๋ก  ์ง€์—ฐ์ด ๊ฐ๊ฐ 2.06 ms, 2.19 ms๋กœ 5 ms ํ•œ๊ณ„ ์ด๋‚ด์— ์œ„์น˜ํ•˜๋ฉฐ, ์‹ค์‹œ๊ฐ„ ์šด์šฉ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ชจ๋ธ์˜ Flash ์‚ฌ์šฉ๋Ÿ‰์€ 200 KB ๋ฏธ๋งŒ, RAM์€ ์•ฝ 60 KB ์ˆ˜์ค€์œผ๋กœ STM32 L4๊ธ‰ MCU์˜ ๋‚ด์žฅ ๋ฉ”๋ชจ๋ฆฌ(512 KB Flash, 64 KB RAM) ๋ฒ”์œ„ ๋‚ด์— ์ˆ˜์šฉ๋œ๋‹ค. ๋ฐ˜๋ฉด, MobileNetV2๋Š” ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ์ปค์„œ ์ง€์—ฐ์ด 6.37 ms๋กœ ๋‹ค์†Œ ๋†’๊ณ , RNN์€ ์ˆœ์ฐจ ๊ณ„์‚ฐ ํŠน์„ฑ์ƒ ์‹ค์‹œ๊ฐ„์„ฑ ํ™•๋ณด๊ฐ€ ์–ด๋ ต๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” โ€œ์ •ํ™•๋„-์ง€์—ฐ-์ „๋ ฅโ€ ๊ฐ„์˜ ํŠธ๋ ˆ์ด๋“œ์˜คํ”„๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ์ œ์‹œํ•จ์œผ๋กœ์จ, ์ œ์•ˆ CNN์ด ์†Œํ˜• MCU ํ™˜๊ฒฝ์—์„œ๋„ ์‹ค์‹œ๊ฐ„ ์ง„๋‹จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ๊ฒฝ๋Ÿ‰ ๊ตฌ์กฐ์ž„์„ ์‹คํ—˜์ ์œผ๋กœ ์ž…์ฆํ•œ๋‹ค.

4. ๊ฒฐ ๋ก 

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BLDC ๋ชจํ„ฐ์˜ ์ „๋ฅ˜ ํŒŒํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ์žฅ ์ง„๋‹จ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด, FFT ๋ถ„์„ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์น˜๊ฑฐ๋‚˜ CNN ๊ธฐ๋ฐ˜์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŠนํžˆ, BLDC ๋ชจํ„ฐ์˜ ์ •์ƒ ์ƒํƒœ ๋ฐ ๋‘ ๊ฐ€์ง€ ๊ณ ์žฅ ์ƒํƒœ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์‹คํ—˜์„ ํ†ตํ•ด ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ•™๋ถ€ ์ˆ˜์ค€์—์„œ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ์ €๋น„์šฉยท๊ฒฝ๋Ÿ‰ BLDC ๋ชจํ„ฐ ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ณ , ๊ณ ๊ฐ€์˜ ์ง„๋™ ์„ผ์„œ ์—†์ด๋„ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ 91.8%์˜ ๋†’์€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Š” ์‚ฐ์—… ํ˜„์žฅ์—์„œ ์‹ค์‹œ๊ฐ„ ์œ ์ง€๋ณด์ˆ˜ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์‹ค์šฉ์  ๋Œ€์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ ๋ณธ ๋…ผ๋ฌธ์€ ๋™์ผํ•œ ์ž…๋ ฅ ํฌ๊ธฐ์™€ ์œˆ๋„์šฐ ์กฐ๊ฑด์—์„œ CNN, RNN, FFT-CNN, MobileNetV2๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋‹จ์ˆœ ์ •ํ™•๋„ ์ค‘์‹ฌ ํ‰๊ฐ€์—์„œ ๋ฒ—์–ด๋‚œ ์‹ค์šฉ์  ์„ฑ๋Šฅ ๋น„๊ต ์ฒด๊ณ„๋ฅผ ํ™•๋ฆฝํ•˜์˜€๋‹ค.

์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ํด๋ฆฝ ๋ถ€์ฐฉ์œผ๋กœ ์ธํ•œ ๋น„๋Œ€์นญ ๋ถ€ํ•˜ ์ƒํƒœ์— ๋Œ€ํ•ด์„œ ์ „๋ฅ˜ ์‹ ํ˜ธ์™€ FFT ๋ถ„์„์„ ํ†ตํ•ด ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , CNN ๋ชจ๋ธ์„ ํ†ตํ•ด 91.80%์˜ ๋†’์€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€๋‹ค. ๋‹ค๋งŒ ๋ฒ ์–ด๋ง์— ์ด๋ฌผ์งˆ์„ ์‚ฝ์ž…ํ•œ ๊ณ ์žฅ ์ƒํƒœ๋Š” ์ผ๋ถ€ ์˜ค๋ถ„๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ์ •ํ™•๋„ ๊ฐœ์„ ์„ ์œ„ํ•œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

์ด๋ฅผ ํ†ตํ•ด, ์ „๋ฅ˜ ํŒŒํ˜• ๊ธฐ๋ฐ˜ CNN์ด ๋‹ค์–‘ํ•œ ๊ณ ์žฅ ์กฐ๊ฑด์—์„œ ์•ˆ์ •์ ์ด๊ณ  ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ธฐ๋กํ•˜์˜€์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, RNN์€ ์‹œ๊ณ„์—ด ํŠน์„ฑ๋งŒ์„ ๋ฐ˜์˜ํ•ด ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋˜์—ˆ์œผ๋ฉฐ, FFT-CNN์€ ํŠน์ • ํด๋ž˜์Šค์— ํŽธํ–ฅ๋˜๋Š” ํ•œ๊ณ„๋ฅผ ๋ณด์˜€๋‹ค. ์ƒ์šฉ ๊ฒฝ๋Ÿ‰๋ชจ๋ธ MobileNetV2๋Š” ์ •ํ™•๋„ ๋ฉด์—์„œ ์šฐ์ˆ˜ํ•˜์˜€์œผ๋‚˜, CNN์ด ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜์™€ ์ง€์—ฐ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ๋” ๊ฒฝ๋Ÿ‰์ ์ด๊ณ , ์ด๋Š” ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ์— ์ ํ•ฉํ•จ์„ ์ž…์ฆํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ์ •ํ™•๋„๊ฐ€ ์šฐ์„ ๋˜๋Š” ํ™˜๊ฒฝ์—์„œ๋Š” MobileNetV2๊ฐ€, ๊ฒฝ๋Ÿ‰ยท์‹ค์‹œ๊ฐ„์„ฑ์ด ์ค‘์š”ํ•œ ์‚ฐ์—… IoT ํ™˜๊ฒฝ์—์„œ๋Š” ์ œ์•ˆ CNN์ด ์œ ๋ฆฌํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.

๊ธฐ์กด ์—ฐ๊ตฌ๋“ค๊ณผ์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ์˜ ์ •๋Ÿ‰์  ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. FFT๋ฅผ ์ด์šฉํ•˜์—ฌ BLDC ๋ชจํ„ฐ ๋“œ๋ผ์ด๋ฒ„์˜ ์—ดํ™” ์ƒํƒœ๋ฅผ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ[1]๋Š” ์ •์„ฑ์  ๊ฒฝํ–ฅ๋งŒ์„ ์ œ์‹œํ•˜๊ณ  ์ •๋Ÿ‰์  ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋Š” ๋ณด๊ณ ํ•˜์ง€ ์•Š์•˜๋‹ค. ์ „๋ฅ˜ ๋ฐ ์ง„๋™ ์‹ ํ˜ธ๋ฅผ ์œตํ•ฉํ•˜์—ฌ BLDC ๋ชจํ„ฐ์˜ ๊ถŒ์„  ๊ณ ์žฅ์„ CNN ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถ„๋ฅ˜ํ•œ ์—ฐ๊ตฌ[3]๋Š” ์ „๋ฅ˜ ์‹ ํ˜ธ ๋‹จ๋… ์‚ฌ์šฉ ์‹œ ์•ฝ 87~89%, ์ง„๋™ ์œตํ•ฉ ์‹œ ์•ฝ 93%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด๊ณ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹จ์ผ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ 91.8%์˜ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๋ณตํ•ฉ ์„ผ์„œ ๊ธฐ๋ฐ˜์˜ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ๋น„์Šทํ•œ ์ˆ˜์ค€์˜ ์„ฑ๋Šฅ์„ ์ €๋น„์šฉ STM32 MCU ํ™˜๊ฒฝ์—์„œ ์‹คํ—˜์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Š” ๋ณตํ•ฉ ์„ผ์„œ๋‚˜ ๊ณ ์„ฑ๋Šฅ ์—ฐ์‚ฐ ํ™˜๊ฒฝ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ ๋„ BLDC ๋ชจํ„ฐ์˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹คํ—˜์ ์œผ๋กœ ์ž…์ฆํ•œ ๊ฒฐ๊ณผ์ด๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๋Š” ๊ธฐ์กด์˜ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ CNN ์ง„๋‹จ ์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ, ์ €๋น„์šฉ MCU ํ™˜๊ฒฝ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ˆ˜์ง‘ํ•œ ์ „๋ฅ˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ CNN ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ๋ถ„๋ฅ˜๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค๋Š” ์ ์— ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ณ ์„ฑ๋Šฅ GPU๋‚˜ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ์…‹์— ์˜์กดํ•˜์ง€ ์•Š๊ณ ๋„ CNN์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŠนํžˆ ํ•™๋ถ€ ์ˆ˜์ค€์—์„œ ๊ตฌํ˜„ ๊ฐ€๋Šฅํ•œ ํ•˜๋“œ์›จ์–ด์™€ ๊ฐ„๋‹จํ•œ FFT ์ „์ฒ˜๋ฆฌ๋งŒ์œผ๋กœ ๊ณ ์žฅ ๋ถ„๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•จ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์จ, ์†Œํ˜•ยท๊ฒฝ๋Ÿ‰ ์ง„๋‹จ ์‹œ์Šคํ…œ ์„ค๊ณ„์˜ ์‹ค์šฉ์  ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ์€ ํ–ฅํ›„ ์‚ฐ์—…์šฉ IoT ํ™˜๊ฒฝ์—์„œ์˜ ์‹ค์‹œ๊ฐ„ ๋ชจํ„ฐ ์ง„๋‹จ ๋ฐ ์˜ˆ์ง€๋ณด์ „ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์˜ ๊ธฐ๋ฐ˜์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์œผ๋กœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‚ฌํ•ญ์„ ์ œ์•ˆํ•œ๋‹ค.

์ฒซ์งธ, ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ๊ณ ์žฅ ์กฐ๊ฑด์„ ์ถ”๊ฐ€๋กœ ์„ค์ •ํ•˜๊ณ  ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฒ”์œ„๋ฅผ ํ™•๋Œ€ํ•˜์—ฌ ๋ณด๋‹ค ์ผ๋ฐ˜ํ™”๋˜๊ณ  ๊ฒฌ๊ณ ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ถŒ์„  ๋‹จ๋ฝ, ์„ผ์„œ ์ด์ƒ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ๋Œ€ํ‘œ์  ๊ณ ์žฅ ์œ ํ˜•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํฌ๊ฒŒ ํ™•์žฅํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

๋‘˜์งธ, ๋ฐ์ดํ„ฐ ์–‘์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ํ™˜๊ฒฝ์„ ๋‹ค์–‘ํ™”ํ•˜์—ฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋” ๋งŽ์€ ์‹ค์ œ ์šด์šฉ ์กฐ๊ฑด์—์„œ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•๋ณดํ•˜๊ณ , ๋‹ค์–‘ํ•œ ์šด์ „ ์กฐ๊ฑด(๋ถ€ํ•˜ ๋ณ€ํ™”, ์˜จ๋„ ๋ณ€ํ™” ๋“ฑ)์— ๋”ฐ๋ฅธ ๋ฐ์ดํ„ฐ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๋ฉด ๋ณด๋‹ค ์‹ ๋ขฐ์„ฑ ๋†’์€ ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ ๊ตฌ์ถ•์— ๊ธฐ์—ฌํ•  ๊ฒƒ์ด๋‹ค.

์…‹์งธ, ์ „๋ฅ˜ ํŒŒํ˜• ๋ฐ์ดํ„ฐ๋ฟ ์•„๋‹ˆ๋ผ ์ง„๋™, ์˜จ๋„ ๋“ฑ ์ถ”๊ฐ€์ ์ธ ์„ผ์„œ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฉ€ํ‹ฐ ์„ผ์„œ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ๋„ ํ–ฅํ›„ ์œ ๋งํ•œ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์ด๋‹ค. ์—ฌ๋Ÿฌ ์„ผ์„œ ์ •๋ณด๋ฅผ ์œตํ•ฉํ•จ์œผ๋กœ์จ ๊ณ ์žฅ ์œ ํ˜• ๊ฐ„ ๋ฏธ์„ธํ•œ ์ฐจ์ด๋ฅผ ๋”์šฑ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๊ณ , ์กฐ๊ธฐ ์ง„๋‹จ ๋ฐ ์˜ˆ๋ฐฉ ์ •๋น„ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ๋„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.

Acknowledgements

This research was supported by Soongsil University.

References

1 
S.-Y. Lim, U.-H. Jeong, H.-W. Lim, 2016, Study on failure prediction method of BLDC motor driver, J. Adv. Eng. Technol., Vol. 9, No. 2, pp. 105-109Google Search
2 
H. Bae, S. Kim, G. Vachtsevanos, 2009, Fault detection and diagnosis of winding short in BLDC motors based on fuzzy similarity, Int. J. Fuzzy Logic Intell. Syst., Vol. 9, No. 2, pp. 99-104DOI
3 
T. A. Shifat, J. W. Hur, 2020, An effective stator fault diagnosis framework of BLDC motor based on vibration and current signals, IEEE Access, Vol. 8, pp. 106968-106981DOI
4 
B.-G. Park, K.-J. Lee, R.-Y. Kim, D.-S. Hyun, 2010, Low-cost fault diagnosis algorithm for switch open-damage in BLDC motor drives, J. Power Electron., Vol. 10, No. 6, pp. 702-708DOI
5 
J.-W. Sung, E.-G. Lee, S. Kwak, 2025, AI based capacitor aging diagnosis for DC/DC converters, The Transactions of the Korean Institute of Electrical Engineers, Vol. 74, No. 4, pp. 624-628Google Search
6 
I. Ul Hassan, K. Panduru, J. Walsh, 2024, An in-depth study of vibration sensors for condition monitoring, Sensors, Vol. 24, No. 3DOI
7 
C. R. Soto-Ocampo, J. M. Mera, J. D. Cano-Moreno, J. L. Garcia-Bernardo, 2020, Low-cost, high-frequency, data acquisition system for condition monitoring of rotating machinery through vibration analysisโ€”Case study, Sensors, Vol. 20, No. 12DOI
8 
P. Suawa, T. Meisel, M. Jongmanns, M. Huebner, M. Reichenbach, 2022, Modeling and fault detection of brushless direct current motor by deep learning sensor data fusion, Sensors, Vol. 22, No. 9DOI
9 
Z. Zhao, J. Wu, S. Liu, L. Zhao, 2019, A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion, Sensors, Vol. 19, No. 7DOI
10 
W. Zhang, C. Li, G. Peng, C. Yen, Z. Zhang, 2018, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, IEEE Trans. Ind. Electron., Vol. 65, No. 5, pp. 4290-4300DOI
11 
O. Janssens, 2016, Convolutional neural network based fault detection for rotating machinery, J. Sound Vib., Vol. 377, pp. 331-345DOI
12 
S. Zhang, S. Zhang, B. Wang, T. G. Habetler, 2019, Machine learning and deep learning algorithms for bearing fault diagnosticsโ€”A comprehensive review, IEEE Access, Vol. 7, pp. 136400-136415Google Search
13 
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, ImageNet classification with deep convolutional neural networks, pp. 1097-1105Google Search
14 
D. P. Kingma, J. Ba, 2015, Adam: A method for stochastic optimizationGoogle Search
15 
N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, 2017, On large-batch training for deep learning: Generalization gap and sharp minimaDOI

์ €์ž์†Œ๊ฐœ

์ตœ์ค€์ด(Jun-I Choi)
../../Resources/kiee/KIEE.2026.75.2.324/au1.png

Juni Choi is a researcher at the Department of Electrical Engineering, Soongsil University. His research interests include BLDC motor fault diagnosis, signal processing, and machine learning-based condition monitoring.

๊น€๋Œ€ํ›ˆ(Dae-Hoon Kim)
../../Resources/kiee/KIEE.2026.75.2.324/au2.png

Daehoon Kim is a researcher at the Department of Electrical Engineering, Soongsil University. His research interests include BLDC motor fault diagnosis, signal processing, and machine learning-based condition monitoring.

์ž„ํ˜•๋ฏผ(Hyung-Min Im)
../../Resources/kiee/KIEE.2026.75.2.324/au3.png

Hyungmin Im is a researcher at the Department of Electrical Engineering, Soongsil University. His research interests include BLDC motor fault diagnosis, signal processing, and machine learning-based condition monitoring.

์ตœ์›์น (Won-Chil Choi)
../../Resources/kiee/KIEE.2026.75.2.324/au4.png

Wonchil Choi received his B.S. and M.S. degrees from the Department of Electrical Engineering from Soongsil University in Seoul, Korea, in 2020 and 2025, respectively. He currently works in a Bioinspired Architecture Engineering Laboratory. His research interests include artificial intelligence, bio-inspired robotics, and AI-based Signal analysis.

๋ฐฐ์›๊ทœ(Won-Gyu Bae)
../../Resources/kiee/KIEE.2026.75.2.324/au5.png

Won-Gyu Bae received his Ph.D. degree in bioengineering from Seoul National University, Seoul, Korea, in 2014. He conducted research at Stanford University as a Postdoctoral course. He has been an Associate Professor with Soongsil University in Seoul, Korea, since 2016. His research interests include biomimetic applications using MEMS.