KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2026-02
(Vol.75 No.2)
10.5370/KIEE.2026.75.2.324
Journal XML
XML
PDF
INFO
REF
References
1
S.-Y. Lim, U.-H. Jeong, H.-W. Lim, 2016, Study on failure prediction method of BLDC motor driver, J. Adv. Eng. Technol., Vol. 9, No. 2, pp. 105-109
2
H. Bae, S. Kim, G. Vachtsevanos, 2009, Fault detection and diagnosis of winding short in BLDC motors based on fuzzy similarity, Int. J. Fuzzy Logic Intell. Syst., Vol. 9, No. 2, pp. 99-104
3
T. A. Shifat, J. W. Hur, 2020, An effective stator fault diagnosis framework of BLDC motor based on vibration and current signals, IEEE Access, Vol. 8, pp. 106968-106981
4
B.-G. Park, K.-J. Lee, R.-Y. Kim, D.-S. Hyun, 2010, Low-cost fault diagnosis algorithm for switch open-damage in BLDC motor drives, J. Power Electron., Vol. 10, No. 6, pp. 702-708
5
J.-W. Sung, E.-G. Lee, S. Kwak, 2025, AI based capacitor aging diagnosis for DC/DC converters, The Transactions of the Korean Institute of Electrical Engineers, Vol. 74, No. 4, pp. 624-628
6
I. Ul Hassan, K. Panduru, J. Walsh, 2024, An in-depth study of vibration sensors for condition monitoring, Sensors, Vol. 24, No. 3
7
C. R. Soto-Ocampo, J. M. Mera, J. D. Cano-Moreno, J. L. Garcia-Bernardo, 2020, Low-cost, high-frequency, data acquisition system for condition monitoring of rotating machinery through vibration analysis—Case study, Sensors, Vol. 20, No. 12
8
P. Suawa, T. Meisel, M. Jongmanns, M. Huebner, M. Reichenbach, 2022, Modeling and fault detection of brushless direct current motor by deep learning sensor data fusion, Sensors, Vol. 22, No. 9
9
Z. Zhao, J. Wu, S. Liu, L. Zhao, 2019, A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion, Sensors, Vol. 19, No. 7
10
W. Zhang, C. Li, G. Peng, C. Yen, Z. Zhang, 2018, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals, IEEE Trans. Ind. Electron., Vol. 65, No. 5, pp. 4290-4300
11
O. Janssens, 2016, Convolutional neural network based fault detection for rotating machinery, J. Sound Vib., Vol. 377, pp. 331-345
12
S. Zhang, S. Zhang, B. Wang, T. G. Habetler, 2019, Machine learning and deep learning algorithms for bearing fault diagnostics—A comprehensive review, IEEE Access, Vol. 7, pp. 136400-136415
13
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, ImageNet classification with deep convolutional neural networks, pp. 1097-1105
14
D. P. Kingma, J. Ba, 2015, Adam: A method for stochastic optimization
15
N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang, 2017, On large-batch training for deep learning: Generalization gap and sharp minima