Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers

References

1 
B. Koo, H. Kim, H. Lee, J. Park, Aug 2015, Short-term Electric Load Forecasting for Summer Season using Temperature Data, Trans. of the KIEE, Vol. 64, No. 8, pp. 1137-1144DOI
2 
S. Ryu et al., Feb 2015, Development of Real-Time Load Forecasting Technique and A Study on On-Line Load Forecasting Scheme, KPX ReportGoogle Search
3 
H. Jung et al., May 2014, An Analysis of Error Rates for Short-Term Electric Load Forecasting, in Proceedings of the KIIEE Annual Conference, pp. 274-275Google Search
4 
H. Alfares, M. Nazeeruddin, April 2010, Electric Load Forecasting: Literature Survey and Classification of Methods, International Journal of Systems Science, pp. 23-34DOI
5 
B. Oh, B. Choi, Y. Choi, S. Kim, July 2019, Development of Machine Learning based Short-term Load Forecasting Algorithm, in Proceedings of the KIEE Workshop, pp. 86-87Google Search
6 
B. Oh, S. Kim, June 2019, Development of SVR based Short-term Load Forecasting Algorithm, Trans. P of the KIEE, pp. 95-99Google Search
7 
J. Son, H. Lee, H. Ahn, May 2019, RNN-based Deep Learning Model for Electricity Load Prediction, in Proceedings of ICROS, pp. 444-445Google Search
8 
K. Kim, S. Jo, R. Park, K. Song, July 2017, The Trend of Electric Load Forecasting Using Artificial Intelligent, in Proceedings of the KIEE Conference, pp. 457-458Google Search
9 
G. Gross, F. Galiana, Dec 1987, Short-Term Load Forecasting, Proceedings of the IEEE, Vol. 75, No. 12, pp. 1558-1573DOI
10 
T. Chen, C. Guestrin, 2016, XGBoost: A Scalable Tree Boosting System, KDDGoogle Search
11 
J. Jeong, J. Kim, Dec 2018, A Bayesian Optimization Meth- odology for Improving Performance of Deep Q-Networks, in Proceedings of the KIISE Conference, pp. 773-775Google Search
12 
Y. Choi, J. Choo, Dec 2017, An empirical comparison study of random, TPE and HORD methods for hyper-parameter search, in Proceedings of the KIISE, pp. 880-882Google Search