• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
L. Yang et al., “NPDC structure double-channel N-polar E-mode GaN HEMTs: Innovations in enhancing RF and DC performance and mitigating trap effects,” Microelectronics Journal, vol. 154, pp. 106461, Dec. 2024.DOI
2 
S. Pavlidis, G. Medwig, and M. Thomas, “Ultrawide-bandgap semiconductors for high-frequency devices,” IEEE Microwave Magazine, vol. 25, no. 10, pp. 68–79, Oct. 2024. DOI:10.1109/MMM.2024.3428193DOI
3 
H. Huang, Y. Lei, and N. Sun, “Progress of GaN-based E-mode HEMTs,” Journal of Physics D: Applied Physics, vol. 57, no. 41, pp. 413002, Oct. 2024.URL
4 
N. Keshmiri et al., “Current status and future trends of GaN HEMTs in electrified transportation,” IEEE Access, vol. 8, pp. 70553–70571, 2020. DOI:10.1109/ACCESS.2020.2986972DOI
5 
J. Kim, “A review of Ku-band GaN HEMT power amplifiers development,” Micromachines, vol. 15, no. 11, pp. 1381, Nov. 2024. DOI:10.3390/mi15111381DOI
6 
R. Giofrè, A. Piacibello, P. Colantonio, and V. Camarchia, “Gallium nitride power amplifiers for Ka-band satcom applications: Requirements, trends, and the way forward,” IEEE Microwave Magazine, vol. 24, no. 12, pp. 74–86, Dec. 2023. DOI:10.1109/MMM.2023.3314321DOI
7 
S. Lu et al., “PCB-interposer-on-DBC packaging of 650 V, 120 A GaN HEMTs,” in Proc. IEEE Applied Power Electronics Conf. and Exposition (APEC), New Orleans, LA, USA, pp. 370–373, 2020. DOI:10.1109/APEC39645.2020.9124159DOI
8 
B. Sun et al., “Design, characteristics and application of pluggable low-inductance switching power cell of paralleled GaN HEMTs,” in Proc. 43rd Annu. Conf. IEEE Industrial Electronics Society (IECON), Beijing, China, pp. 1077–1082, 2017. DOI:10.1109/IECON.2017.8216185DOI
9 
S. Lu et al., “Improved measurement accuracy for junction- to-case thermal resistance of GaN HEMT packages by gate-to-gate electrical resistance and stacking thermal interface materials,” IEEE Trans. Power Electronics, vol. 37, no. 6, pp. 6285–6289, Jun. 2022.DOI
10 
A. I. Emon et al., “A review of high-speed GaN power modules: State of the art, challenges, and solutions,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 2707–2729, Jun. 2023. DOI:10.1109/JESTPE.2022.3232265DOI
11 
R. Carluccio et al., “Influence of material composition on copper-aluminum wire bonding reliability,” in Proc. 26th IEEE Electronics Packaging Technology Conf. (EPTC), Singapore, pp. 519–525, 2024. DOI:10.1109/EPTC62800.2024.10909956DOI
12 
A. Rezvani, A. Shah, M. Mayer, Y. Zhou, and J. T. Moon, “Role of impact ultrasound on bond strength and Al pad splash in Cu wire bonding,” Microelectronics Reliability, vol. 53, no. 7, pp. 1002–1008, Jul. 2013.DOI
13 
L. Wang et al., “Review of topside interconnections for wide bandgap power semiconductor packaging,” IEEE Trans. Power Electronics, vol. 38, no. 1, pp. 472–490, Jan. 2023. DOI:10.1109/TPEL.2022.3200469DOI
14 
S. Seal and H. A. Mantooth, “High performance silicon carbide power packaging—Past trends, present practices, and future directions,” Energies, vol. 10, no. 3, pp. 341, Mar. 2017. DOI:10.3390/en10030341DOI
15 
H. S.-W. Tang et al., “Packaging challenges and solutions for next generation low-profile WLCSP,” in Proc. 74th IEEE Electronic Components and Technology Conf. (ECTC), Denver, CO, USA, pp. 2083–2090, 2024. DOI:10.1109/ECTC51529.2024.00355DOI
16 
J. Gallery and S. Lytwynec, “The effect of AuSn preform thickness on thermal transfer in semiconductor laser technologies,” in High-Power Diode Laser Technology XX, vol. 11983, SPIE, 2022.DOI
17 
K. Ramakrishna, T. Y. Wu, and E. M. Mockensturm, “Effect of solder thickness on mechanical reliability of die-bonded chip package during chip encapsulation and accelerated thermal cycling,” in Proc. ASME Winter Annu. Meeting, New Orleans, LA, USA, 1993.URL
18 
D. Esler, “GE SiC semiconductor device operation at extreme temperatures,” Journal of Microelectronic & Electronic Packaging, vol. 19, no. 3, 2022.URL
19 
D. J. Cheney et al., “Degradation mechanisms for GaN and GaAs high speed transistors,” Materials, vol. 5, no. 12, pp. 2498–2520, Nov. 2012. DOI:10.3390/ma5122498DOI
20 
A. Hensler et al., “Power cycling tests at high temperatures with IGBT power modules for hybrid electrical vehicle applications,” in Proc. 3rd Electronics System Integration Technology Conf. (ESTC), Berlin, Germany, 2010.DOI
21 
B. Sun et al., “Research of power loop layout and parasitic inductance in GaN transistor implementation,” IEEE Trans. Industry Applications, vol. 57, no. 2, pp. 1677–1687, Mar.–Apr. 2021.DOI
22 
F. Li et al., “Modeling and suppression of common-mode electromagnetic interference in GaN-based LLC converter,” in Proc. 7th Asia Conf. Energy and Electrical Engineering (ACEEE), Chengdu, China, pp. 125–129, 2024. DOI:10.1109/ACEEE62329.2024.10652047DOI
23 
J. Kim, L. Ren, and J. Fan, “Physics-based inductance extraction for via arrays in parallel planes for power distribution network design,” IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 9, pp. 2434–2447, Sep. 2010.DOI
24 
L. Efthymiou et al., “On the source of oscillatory behaviour during switching of power enhancement mode GaN HEMTs,” Energies, vol. 10, no. 3, pp. 407, Mar. 2017. DOI:10.3390/en10030407DOI
25 
D. C. Montgomery, Design and Analysis of Experiments, 10th ed., Wiley, pp. 1–656, 2019.URL
26 
M. A. Bezerra et al., “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, Sep. 2008. DOI:10.1016/j.talanta.2008.05.019DOI
27 
A. Sharma, “Optimization of process parameters using desirability concept in conjunction with Six Sigma process capability analyses – A case study,” Quarterly Journal of Indian Pulp and Paper Technical Association, vol. 15, no. 1, pp. 13–20, 2003.URL
28 
A. Wright, A. Hutzler, A. Schletz, and P. Pichler, “Thermo- mechanical simulation of plastic deformation during temperature cycling of bond wires for power electronic modules,” in Proc. 15th Int. Conf. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Ghent, Belgium, pp. 1–5, 2014. DOI:10.1109/EuroSimE.2014.6813813DOI