• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Korea Semiconductor Industry Association (KSIA), “Semiconductor Industry Trends,” 2024. https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do;jsessionid=t447-ZkzzndkiytvMoJEFDyCy2KusiPs-s4NJKg7.node11?idx_cd=A0002URL
2 
Liu, Chiao-Wen and Chen-Fu Chien, “An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing,” Engineering Applications of Artificial Intelligence, vol. 26, no. 5-6, pp. 1479-1486, 2013. DOI:https://doi.org/10.1016/j.engappai.2012.11.009DOI
3 
D. Kim and K. Cho, “Digital transformation characteristics of the semiconductor industry ecosystem,” Sustainability, vol. 15, no. 1, 483, 2022. DOI:https://doi.org/10.3390/su15010483DOI
4 
S. Kang, “Rotation-invariant wafer map pattern classification with convolutional neural networks,” IEEE Access, vol. 8, pp. 170650-170658, 2020. DOI:https://doi.org/10.1109/ACCESS.2020.3024603DOI
5 
S. Chen, et al., “Wafer map failure pattern recognition based on deep convolutional neural network,” Expert Systems with Applications, vol. 209, 118254, 2022. DOI:https://doi.org/10.1016/j.eswa.2022.118254DOI
6 
S. Yoon and S. Kang, “Semi-automatic wafer map pattern classification with convolutional neural networks,” Computers & Industrial Engineering, vol. 166, 107977, 2022. DOI:https://doi.org/10.1016/j.cie.2022.107977DOI
7 
T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer map classification based on data augmentation,” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663-672, 2020. DOI:https://doi.org/10.1109/TSM.2020.3013004DOI
8 
E.-S. Kim, et al., “An oversampling method for wafer map defect pattern classification considering small and imbalanced data,” Computers & Industrial Engineering, vol. 162, 107767, 2021. DOI:https://doi.org/10.1016/j.cie.2021.107767DOI
9 
T.-H. Tsai and C.-Y. Wang, “Wafer Map Defect Classification using Deep Learning Framework with Data Augmentation on Imbalance Datasets,” 2022. DOI:https://doi.org/10.1186/s13640-025-00666-3DOI
10 
S.-H. Chen, C.-H. Kang and D.-B. Perng, “Detecting and measuring defects in wafer die using GAN and YOLOv3,” Applied Sciences, vol. 10, no. 23, 8725, 2020. DOI:https://doi.org/10.3390/app10238725DOI
11 
T. S. Kim, et al., “Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm,” Journal of Intelligent Manufacturing, vol. 33, no. 6, pp. 1715-1724, 2022. DOI:https://doi.org/10.1007/s10845-021-01755-6DOI
12 
J. Wang, et al., “Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition,” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 4, pp. 587-596, 2020. DOI:https://doi.org/10.1109/TSM.2020.3020985DOI
13 
A. Dosovitskiy, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. DOI:https://doi.org/10.48550/arXiv.2010.11929DOI
14 
S. G. Muller and F. Hutter, “Trivialaugment: Tuning-free yet state-of-the-art data augmentation,” Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021. DOI:https://doi.org/10.48550/arXiv.2103.10158DOI
15 
E. D. Cubuk, B. Zoph, J. Shlens and Q. V. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702-703, 2020. DOI:https://doi.org/10.48550/arXiv.1909.13719DOI
16 
S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016. DOI:https://doi.org/10.48550/arXiv.1609.04747DOI
17 
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. DOI:https://doi.org/10.48550/arXiv.1412.6980DOI
18 
I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017. DOI:https://doi.org/10.48550/arXiv.1711.05101DOI
19 
I. Jeong, et al., “Wafer map failure pattern classification using geometric transformation-invariant convolutional neural network,” Scientific Reports, vol. 13, no. 1, 8127, 2023. DOI:https://doi.org/10.1038/s41598-023-34147-2DOI
20 
M.-C. Chiu and T.-M. Chen, “Applying data augmentation and mask R-CNN-based instance segmentation method for mixed-type wafer maps defect patterns classification,” IEEE Transactions on Semiconductor Manufacturing, vol. 34, no. 4, pp. 455–463, 2021. DOI:https://doi.org/10.1109/TSM.2021.3118922DOI
21 
J. Duchi, et al., “Adaptive subgradient methods for online learning and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–2159, 2011. DOI:https://doi.org/10.5555/1953048.2021068DOI