KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2026-02
(Vol.75 No.2)
10.5370/KIEE.2026.75.2.266
Journal XML
XML
PDF
INFO
REF
References
1
M. M. Haque, P. Wolfs, 2016, A review of high PV penetrations is lvdistribution networks: present status, impacts and mitigation measures, Renew. Sustain. Energy Rev, Vol. 62, pp. 1195-1208
2
A. Dey, B. Chakraborty, S. Dalai, K. Bhattacharya, 2022, Insights and new practices for advanced metering infrastructure and smart energy metering framework in smart grid-a case study, pp. 323-326
3
D. Chen, D. Irwin, 2018, Sundance: black-box behind-the-meter solar disaggregation, pp. 45-55
4
K. Pu, Y. Zhao, 2023, An unsupervised similarity-based method for estimating behind-the-meter solar generation, pp. 1-5
5
E. C. Kara, C. M. Roberts, M. Tabone, L. Alvarez, D. S. Callaway, E. M. Stewart, 2018, Disaggregating solar generation from feeder-level measurements, Sustainable Energy, Grids and Networks, Vol. 13, pp. 112-121
6
J. Lin, J. Ma, J. Zhu, 2022, A privacy-preserving federated learning method for probabilistic community-level behind-the-meter solar generation disaggregation, IEEE Trans. Smart Grid, Vol. 13, No. 1, pp. 268-279
7
2023, 2023 distributed system implementation plan (DSIP) update
8
N. Balakumar, L. Kristov, M. McDonnell, M. Paterson, 2024, Distribution system operator (DSO) initial study
9
F. Bu, K. Dehghanpour, Y. Yuan, Z. Wang, Y. Zhang, 2020, A data-driven game-theoretic approach for behind-the-meter PV generation disaggregation, IEEE Trans. Power Syst., Vol. 35, No. 4, pp. 3133-3144
10
F. Bu, R. Cheng, Z. Wang, 2023, A two-layer approach for estimating behind-the-meter PV generation using smart meter data, IEEE Trans. Power Syst., Vol. 38, No. 1, pp. 885-896
11
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780
12
A. Graves, J. Schmidhuber, 2005, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, Vol. 18, No. 5–6, pp. 602-610
13
A. Zeng, M. Chen, L. Zhang, Q. Xu, 2023, Are transformers effective for time series forecasting?, pp. 11121-11128
14
D. Dahlioui, M. B. Øgaard, A. G. Imenes, 2025, Snow impact on PV performance: assessing the zero-output challenge in cold areas, Renew. Sustain. Energy Rev., Vol. 213
15
M. Yue, T. Hong, J. Wang, 2019, Descriptive analytics-based anomaly detection for cybersecure load forecasting, IEEE Transactions on Smart Grid, Vol. 10, No. 6, pp. 5964-5974
16
K. Li, L. Wu, L. Fi, D. Wang, 2023, A TCN-based hybrid forecasting framework for hours-ahead utility-scale PV forecasting, IEEE Transactions on Sustainable Energy, Vol. 14, No. 4, pp. 2195-2207
17
C. Pavlatos, E. Makris, G. Fotis, V. Vita, V. Mladenov, 2023, Enhancing electrical load prediction using a bidirectional LSTM neural network, Electronics, Vol. 12, No. 22
18
S. Dubey, J. N. Sarvaiya, B. Seshadri, 2013, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review, Energy Proc., Vol. 33, pp. 311-321
19
M.-H. Guo, 2023, Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, pp. 5436-5447
20
Y. Liu, 2024, iTransformer: Inverted Transformers are effective for time series forecasting
21
H. Wu, 2021, Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
22
T. Zhou, 2022, FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting
23
A. Vaswani, 2017, Attention is all you need
24
V. Ekambaram, 2023, TSMixer: Lightweight MLP-Mixer model for multivariate time series forecasting