KIEE
The Transactions P of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Quarterly
ISSN : 1229-800X (Print)
ISSN : 2586-7792 (Online)
http://journal.auric.kr/kieep
Mobile QR Code
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Trans. P of KIEE
Indexed by
Korea Citation Index(KCI)
Main Menu
Main Menu
About Journal
저널소개
Aim Scopes
편집위원회
Editorial Board
연락처
Contact
Submission & Review
논문투고안내
Instructions to Author
논문투고·심사
Submission & Review
Archives
최근호
Current
논문검색
Search for Articles
Membership
논문구독
Subscription
Journal Search
Home
Archive
2022-03
(Vol.71P No.01)
10.5370/KIEEP.2022.71.1.54
Journal XML
XML
PDF
INFO
REF
References
1
D. Jeong, 2020, Artificial intelligence security threat, crime, and forensics: Taxonomy and open issues, IEEE Access, Vol. 8, pp. 184560-184574
2
J. W. Kim, P. K. Rhee, 2018, Image Recognition based on Adaptive Deep Learning, The Journal of the Institute of Internet, Broadcasting and Communication, Vol. 18, No. 1, pp. 113-117
3
L. Lu, J. Mao, W. Wang, G. Ding, Z. Zhang, Aug. 2020, A Study of Personal Recognition Method Based on EMG Signal, IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 4, pp. 681-691
4
H. S. Sin, C. Y. Hahm, N. K. Kim, M. K. Kim, S. H. Lee, Y. S. Kim, 2014, Trends of Emotional Information & Communication Technology, Electronics and Telecommunications Trends, Vol. 29, No. 5, pp. 30-39
5
A. Barros, D. Rosário, P. Resque, E. Cerqueira, 2019, Heart of IoT: ECG as biometric sign for authentication and identification, 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 307-312
6
X. Jiang, et al., 2021, Cancelable HD-sEMG-Based Biometrics for Cross-Application Discrepant Personal Identification, IEEE Journal of Biomedical, Health Informatics, Vol. 25, No. 4, pp. 1070-1079
7
K. Rabuzin, M. Baca, M. Sajko, 2006, E-learning: Biometrics as a Security Factor, International Multi- Conference on Computing in the Global Information Technology, pp. 64-64
8
M. Ingale, R. Cordeiro, S. Thentu, Y. Park, N. Karimian, 2020, ECG biometric authentication: A comparative analysis, IEEE Access, Vol. 8, pp. 117853-117866
9
Q. Zhang, D. Zhou, X. Zeng, 2017, HeartID: A multiresolution convolutional neural network for ECG-Based biometric human identification in smart health applications, IEEE Access, Vol. 5, pp. 11805-11816
10
R. Bousseljot, D. Kreiseler, A. Schnabel, 1995., Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet, Biomedizinische Technik, pp. 317
11
G. B. Moody, R. G. Mark., 2001, The impact of the MIT-BIH Arrhythmia Database, IEEE Engineering in Medicine and Biology Magazine, Vol. 20, No. 3, pp. 45-50
12
T. S. Lugovaya, 2005, Biometric human identification based on electrocardiogram
13
S. A. Israel, J. M.Irvine, A. Cheng, M. D. Wiederhold, B. K. Wiederhold, 2005, ECG to identify individuals, Pattern Recognition, Vol. 38, No. 1, pp. 113-142
14
M. Jahiruzzaman, A. B. M. A. Hossain, 2015, ECG based biometric human identification using chaotic encryption, 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1-5
15
S. S. Abdeldayem, T. Bourlai, 2020, A novel approach for ECG-Based human identification using spectral correlation and deep learning, IEEE Transactions on Biometrics, Behavior, and Identity Science, Vol. 2, No. 1, pp. 1-14
16
R. D. Labati, E. Muñoz, V. Piuri, R. Sassi, F. Scotti, 2019, Deep-ECG: Convolutional neural networks for ECG biometric recognition, Pattern Recognition Letters, Vol. 126, pp. 78-85
17
Y. H. Byeon, K. C. Kwak, 2019, Pre-Configured Deep Convolutional Neural Networks with Various Time- Frequency Representations for Biometrics from ECG Signals, Applied Sciences, Vol. 9, No. 22, pp. 2076-3417
18
L. Biel, O. Pettersson, L. Philipson, P. Wide, 2001, ECG analysis: a new approach in human identification, IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 3, pp. 808-812
19
D. Jyotishi, S. Dandapat, 2020, An LSTM-Based Model for Person Identification Using ECG Signal, IEEE Sensors Letters, Vol. 4, No. 8, pp. 1-4
20
J. S. Kim, S. G. Kim, S. B. Pan, 2020, Personal recognition using convolutional nearal network with ECG coupling image, Journal of Ambient Intelligence and Humanized Computing, Vol. 11, pp. 1923-1932
21
M. Hammad, P. Pławiak, K. Wang, U. R. Acharya, 2021, ResNet-Attention model for human authen ticationusing ECG signals, Expert Systems, Vol. 38, No. 6
22
Y. H. Byeon, S. B. Pan, K. C. Kwak, 2019., Intelligent deep models based on scalograms of electrocardiogram signals for biometrics, Sensors, Vol. 19, No. 4
23
K. El-Shennawy, 2014, Communication theory and signal processing for transform coding, Bentham Science Publishers
24
T. Oberlin, S. Meignen, V. Perrier, 2014, The fourier-based synchrosqueezing transform, 2014 IEEE International Conference on Acoustic,s Speech and Signal Processing (ICASSP), pp. 315-319
25
A. Kumar, C. P. Gandhi, Y. Zhou, G. Vashishtha, R. Kumar, J. Xiang, 2020, Improved CNN for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-squeezed transform (WSST), Knowledge-Based Systems, Vol. 208
26
A. Lumini, L. Nanni, 2019, Deep learning and transfer learning features for plankton classification, Ecological Informatics, Vol. 51, pp. 33-43
27
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778