Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
OECD/IEA , 2013, Technology Roadmap Carbon Capture and Storage, ParisGoogle Search
2 
Mohitpour M., Seevam P., Botros K. K., Rothwell B., Ennis C., 2012, Pipeline Transportation of Carbon Dioxide Containing Impurities, ASME PressGoogle Search
3 
Li H., 2008, Thermodynamic properties of CO2 mixtures their applications in advanced power cycle with CO2 capture processes, Royal Institute of TechnologyGoogle Search
4 
Son C. H., Lee D. H., Oh H. K., Jeong S. Y., Kim Y. L., 2004, Heat transfer characteristic during gas cooling process of carbon dioxide in a horizontal tube, Transactions of the KSME B, Vol. 28, No. 3, pp. 289-295DOI
5 
Dang C., Hihara E., 2004, In-tube cooling heat transfer of supercritical carbon dioxide, Part 1. Experimental measurement, International Journal of Refrigeration, Vol. 27, pp. 736-747DOI
6 
Liao S. M., Zhao T. S., 2002, Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels, Journal of Heat Transfer, Vol. 124, pp. 413-420DOI
7 
Tan Y., Nookuea W., Li H., Thorin E., Zhao L., Yan J., 2015, Property impacts on performance of CO2 pipeline transport, Energy Procedia, Vol. 75, pp. 2261-2267DOI
8 
Yun R., 2013, Thermopysical properties of CO2 and CO2-hydrate mixture and in-tube heat transfer coefficient characteristics, Korea Journal of Air-Conditioning and Refrigeration, Vol. 25, No. 5, pp. 223-239DOI
9 
Lee W., 2018, In-tube heat transfer coefficient and pressure drop of supercritical CO2 with impurities, Master’s thesis, Hanbat National UniversityGoogle Search
10 
Lemmon E. W., Huber M. L., Downie M. J., Mclinden M. O., 2013, Reference fluid thermodynamic and transport properties (REFPROP) version 9.1 user’s guide, National Institute of Standards and TechnologyGoogle Search
11 
Taylor N. N., Kuyatt C. E., 1994, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, NIST Technical Note 1297Google Search
12 
Lee W., Yun R., 2017, Prediction of transport properties for transportation of captured CO2, 1. Viscosity, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 29, No. 4, pp. 195-201Google Search
13 
Lee W., Yun R., 2017, Prediction of transport properties for transportation of captured CO2. 2. Thermal conductivity, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 29, No. 5, pp. 213-219Google Search
14 
Chung T. H., Ajlan M., Lee L. L., Starling K. E., 1988, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res., Vol. 27, pp. 671-679DOI
15 
Gnielinski V., 1976, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering, Vol. 16, pp. 359-368Google Search
16 
Dittus F. W., Boelter L. M. K., 1930, University of California Publications, Vol. 2, pp. 443
17 
Petukhov B. S., 1970, Heat transfer and friction in turbulent pipe flow with variable physical properties, Advances in Heat Transfer, Vol. 6, pp. 504-564DOI