Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
2018, 2030 Amendment to the GHG Reduction Roadmap and Plan for the allocation of emission allowances from 2018 to 2020, Ministry of Environment.Google Search
2 
2017, 2018 Intergrated Energy Supply Manual, KOREA ENERGY AGENCY.Google Search
3 
ASHRAE , 2015, COMBINED HEAT AND POWER DESIGN GUIDE.Google Search
4 
Joeng J., 2003, Cogeneration Technology Guidebook, Korea Energy Management Corporation.Google Search
5 
Im Y., 2010, A diagnostic simulation for the optimal system configuration of cogeneration systems, The Korean Society of Mechanical Engineers, pp. 3708-3713.Google Search
6 
Kim H., 2017, Forecasting of heat demand for combined heat and power plant, Soongsil University.Google Search
7 
Song K., 2011, Heat Demand Forecasting for Local District Heating, IE Interfaces, Vol. 24, No. 4, pp. 373-378.DOI
8 
Lee J., 2015, A Study on the Deduction of Additional Key Factor for Heat Supply Forecast using the Analysis of Heat Demand Characteristics, The Society of Air-Conditioning and Refrigerating Engineers of Korea, pp. 659-662.Google Search
9 
Kim M., 2008, Development of heat demand forecasting model for district energy management system, Korean Society for Energy, pp. 193-198.Google Search
10 
Dotzauer E., 2002, Simple model for prediction of loads in district-heating system, Applied Energy, pp. 277-284.DOI
11 
Kim H., 2017, Forecasting of heat demand for combined heat and power plant, Soongsil University.Google Search
12 
Back J. K., Han J. H., 2011, Forecasting of Heat Demand in Winter Using Linear Regression Models for Korea District Heating Corporation, Korea Academy Industrial Cooperation Society, pp. 1488-1494.DOI
13 
Han D., Youn H. B., 2002, Study on Air Handling Unit Control Algorithms by Using Building Load Prediction, The Society of Air-Conditioning and Refrigerating Engineers of Korea.Google Search
14 
Jeon B., 2018, Development of Weather Forecast Models for a Short-term Building Load Prediction, Journal of the Korean Solar Energy Society, Vol. 38, No. 1, pp. 1-11.DOI
15 
2015, Practical Practice of District Heating System, KOREA DISTRICT HEATING CORP.Google Search
16 
2002, Measurement of Energy and Demand Saving, ASHRAE Guideline 14Google Search
17 
Aleksandra A. S., Jovanovic R. Z., Novakovic V. M., Nord N. M., Zivkovic B. D., 2018, Support Vector Machine for the Prediction of Heating Energy Use, Vol. 22, suppl. 4, pp. S1171-S1181.DOI
18 
Kumar R., Aggarwal R. K., Sharma J. D., 2013, Energy analysis of a building using artificial neural network : A review, Energy and Buildings, Vol. 64, pp. 352-358.DOI
19 
Kreider J. F., Wan X. A., 1991, Artificial neural network demonstration for automated generation of energy use predictors for commercial buildings, ASHRAE Transaction, Vol. 97, No. 2, pp. 775-779.Google Search
20 
Anstett M., Kreider J. F., 1992, Application of neural networking models to predict energy use, ASHRAE Transactions, No. 3672, pp. 505-517.Google Search
21 
Smola A. J., Scholkopf B., 2004, Statistics and Computing-A Tutorial on Support Vector Regression, Vol. 14, No. 3, pp. 199-222.Google Search
22 
Nguyen P. H., Kling W. L., Elmitri M., Lacarrière B., Le Corre O., 2015, Support Vector Machine in Prediction of Building Energy Demand Using Pseudo Dynamic Approach, Proceedings of Ecos 2015.Google Search
23 
Mager J., Paasche U., Sick B., 2008, Forecasting financial time series with support vector machines based on dynamic kernels, IEEE Conference on soft Computing Industrial Application, 25-27 June, Muroran, Japan, pp. 252-257.DOI
24 
Wang L., 1998, Support Vector Machines for Classification and Regression, ISIS technical report, University of Sauthampton, Sauthampton, UK.DOI
25 
Esen H., Inalli M., Sengur A., Esen M., 2008, Modeling a Ground-Coupled Heat Pump System by a Support Vector Machine, Renewable Energy, Vol. 33, No. 8, pp. 1814-1823.DOI
26 
Cortes C., Vapnik V., 1995, Support-vector networks, Machine Learning, Vol. 20, No. 3, pp. 273-297.DOI
27 
Pedregosa et al., 2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2839.Google Search
28 
Vapnik V., 2000, The nature of statistical learning theory, springer.DOI