Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
Lee, H., Woo, Y., and Lee, M., 2021, The Needs for R&D of Ammonia Combustion Technology for Carbon Neutrality - Part I Background and Economic Feasibility of Expanding the Supply of Fuel Ammonia, Journal of the Korean Society of Combustion, Vol. 26, No. 1, pp. 59-83.DOI
2 
Ministry of Environment, 2019, National Greenhouse Gas Inventory Report of Korea, 11-1480906-000002-10.URL
3 
Available at: <https://www.energy.gov/policy/energy-earthshots-initiative>, 2021.URL
4 
Available at: <https://www.nedo.go.jp/content/100903472.pdf>, 2021.URL
5 
Ministry of Trade, Industry and Energy, 2021, Energy Carbon Neutral Innovation Strategy.URL
6 
National Research Foundation of Korea, 2017, Promising Technology Program - Energy Storage Technology.URL
7 
Cunha, J. and Eames, P., 2016, Thermal Energy Storage for Low and Medium Temperature Applications using Phase Change Materials - A Review, Applied Energy, Vol. 177, No. 9, pp. 227-238.DOI
8 
Crespo, A., Barreneche, C., Ibarra, M., and Platzer, W., 2019, Latent Thermal Energy Storage for Solar Process Heat Applications at Medium-high Temperatures - A Review, Solar Energy, Vol. 192, No. 11, pp. 3-34.DOI
9 
Yang, T., King, W., and Miljkovic, N., 2021, Phase Change Material-based Thermal Energy Storage, Cell Reports Physical Science, Vol. 2, No. 8, p. 100540.DOI
10 
Wang, W., Yang, X., Fang, Y., Ding, J., and Yan, J., 2009, Preparation and Thermal Properties of Polyethylene Glycol/expanded Graphite Blends for Energy Storage, Applied Energy, Vol. 86, No. 9, pp. 1479-1483.DOI
11 
Zhou, Z., Hu, Z., Wang, D., and Wu, H., 2022, Visualized-experimental Investigation on the Melting Performance of PCM in 3D Printed Metal Foam, Thermal Science and Engineering Progress, Vol. 31, No. 6, p. 101298.DOI
12 
TechNavio, 2019, Global Waste Heat Recovery Market.URL
13 
MarketsandMarkets, 2016, Waste Heat Recovery System Market.URL
14 
MarketsandMarkets, 2017, Thermal Energy Storage Market.URL
15 
MarketsandMarkets, 2017, Advanced PCM Market - Global Forecast to 2022.URL
16 
Green Technology Center, 2020, Climate Technology Level Survey - Part I.URL
17 
Johnson, M., Vogel, J., Hempel, M., Dengel, A., Seitz, M., and Hachmann, B., 2015, High Temperature Latent Heat Thermal Energy Storage Integration in a Co-gen Plant, Energy Procedia, Vol. 73, No. 6, pp. 281-288.DOI
18 
Johnson, M., Vogel, J., Hempel, M., Hachmann, B., and Dengel, A., 2017, Design of High Temperature Thermal Energy Storage for High Power Levels, Sustainable Cities and Society, Vol. 35, No. 11, pp. 758-763.DOI
19 
Johnson, M., Hubner, S., Braun, M., Martin, C., Fiß, M., Hachmann, B., Schonberger, M., and Eck, M., 2018, Assembly and Attachment Methods for Extended Aluminum Fins onto Steel Tubes for High Temperature Latent Heat Storage Units, Applied Thermal Engineering, Vol. 144, No. 11, pp. 96-105.DOI
20 
Johnson, M., Hachmann, B., Dengel, A., Fiß, M., Hempel, M., and Bauer, D., 2018, Design and Integration of High Temperature Latent Heat Thermal Energy Storage for High Power Levels, Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Vol. 6B: Energy, pp. IMECE2018-86281, V06BT08A047 (6 pages).DOI
21 
Johnson, M., Dengel, A., Hachmann, B., Fiß, M., and Bauer, D., 2019, Large-scale High Temperature and Power Latent Heat Storage Unit Development, AIP Conference Proceedings, Vol. 2126, p. 200023.DOI
22 
Johnson, M., Fiß, M., Dengel, A., and Bauer, D., 2021, Commissioning of High Temperature Thermal Energy Storage for High Power Levels, Proceedings of the IEA-ECES.URL
23 
Michels, H. and Pitz-Paal, R., 2007, Cascaded Latent Heat Storage for Parabolic Trough Solar Power Plants, Solar Energy, Vol. 81, No. 6, pp. 829-837.DOI
24 
Tamme, R., Bauer, T., Buschle, J., Laing, D., Muller-Steinhagen, H., and Steinmann, W., 2008, Latent Heat Storage above 120℃ for Applications in the Industrial Process Heat Sector and Solar Power Generation, International Journal of Energy Research, Vol. 32, No. 7, pp. 264-271.DOI
25 
Laing, D., Bauer, T., Steinmann, W., and Lehmann, D., 2009, Advanced High Temperature Latent Heat Storage System - Design and Test Results, Proceedings of the 11th International Conference on Thermal Energy Storage.DOI
26 
Birnbaum, J., Eck, M., Fichtner, M., Hirsch, T., Lehmann, D., and Zimmermann, G., 2010, A Direct Steam Generation Solar Power Plant with Integrated Thermal Storage, Journal of Solar Energy Engineering, Vol. 132, No. 3, p. 031014 (5 pages).DOI
27 
Laing, D., Bahl, C., Bauer, T., Lehmann, D., and Steinmann, W., 2011, Thermal Energy Storage for Direct Steam Generation, Solar Energy, Vol. 85, No. 4, pp. 627-633.DOI
28 
Seitz, M., Cetin, P., and Eck, M., 2014, Thermal Storage Concept for Solar Thermal Power Plants with Direct Steam Generation, Vol. 49, No. 6, pp. 993-1002.DOI
29 
Li, D. and Wang, J., 2018, Study of Supercritical Power Plant Integration with High Temperature Thermal Energy Storage for Flexible Operation, Journal of Energy Storage, Vol. 20, No. 12, pp. 140-152.DOI
30 
Nuytten, T., Claessens, B., Paredis, K., Bael, J., and Six, D., 2013, Flexibility of a Combined Heat and Power System with Thermal Energy Storage for District Heating, Applied Energy, Vol. 104, No. 4, pp. 583-591.DOI
31 
Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., and Kruizenga, A., 2017, Concentrating Solar Power Gen3 Demonstration Roadmap, National Renewable Energy Laboratory, NREL Technical Report NREL/TP-5500-67464.DOI
32 
Gomez, J., 2011, High-temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications, National Renewable Energy Laboratory, NREL Milestone Report NREL/TP-5500-51446.DOI
33 
Turchi, C., Vidal, J., and Bauer, M., 2018, Molten Salt Power Towers Operating at 600-650℃: Salt Selection and Cost Benefits, Solar Energy, Vol. 164, No. 4, pp. 38-46.DOI
34 
Barua, B., McMurtrey, M., Rupp, R., and Messner, M., 2020, Design Guidance for High Temperature Concentrating Solar Power Components, Argonne National Laboratory, ANR Technical Report ANL-20/03 158044.DOI
35 
Augustine, C., Kesseli, D., and Turchi, C., 2022, Technoeconomic Cost Analysis of NREL Concentrating Solar Power Gen3 Liquid Pathway, AIP Conference Proceedings, Vol. 2445, p. 030001.DOI
36 
Kuravi, S., Trahan, J., Goswami, D., Rahman, M., and Stefanakos, E., 2013, Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants, Progress in Energy and Combustion Science, Vol. 39, No. 4, pp. 285-319.DOI
37 
Xu, B., Li, P., and Chan, C., 2015, Application of Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants: A Review to Recent Developments, Applied Energy, Vol. 160, No. 12, pp. 286-307.DOI
38 
Kahwaji, S., Johnson, M., Kheirabadi, A., Groulx, D., and White, M., 2018, A Comprehensive Study of Properties of Paraffin Phase Change Materials for Solar Thermal Energy Storage and Thermal Management Applications, Energy, Vol. 162, No. 11, pp. 1169-1182.DOI
39 
Lee, H., Jeong, H., Park, D., and Park, S., 2021, A Study on Dynamic Model of Thermal Energy Storage System using PCM, Proceedings of the Korea Society of Mechanical Engineer, pp. 826-828.URL
40 
Jeong, H., Lee, H., Lee, K., and Park, D., 2021, A New Method to Reduce Start-up Time of Thermal Power Plant using Latent Heat Storage System, Proceedings of the Korea Society of Mechanical Engineer, pp. 212-213.URL
41 
Jeong, H. and Park, D., 2022, Application of Longitudinal Fin to Latent Heat Storage System for Enhancement of Heat Transfer Rate during Heat Charging and Discharging Processes, Proceedings of the Korea Society of Mechanical Engineer, p. 199.URL
42 
Park, D., Jeong, H., Lee, D., Chung, D., and Kang, C., 2021, A Study on Thermal Analysis of Cascade Heat Storages for the Reduction of Preheating Load in Incineration Facilities, Proceedings of the Korea Society of Mechanical Engineer.URL
43 
Park, D., Kim, D., Gu, J., and Kim, D., 2020, Heat Charging and Discharging Characteristics of a 500 MJ-scale Thermal Energy Storage Module, Journal of Korea Society of Waste Management, Vol. 37, No. 3, pp. 179-187.URL
44 
Kalaiselvam, S. and Parameshwaran, R., 2014, Thermal Energy Storage Technologies for Sustainability - Systems Design, Assessment and Applications, Academic Press, London in United Kingdom.URL
45 
Dincer, I. and Rosen, M., 2011, Thermal Energy Storage - Systems and Applications, John Wiley and Sons Limited.URL
46 
Dean, J., 2021, Lange’s Handbook of Chemistry 15th edition, McGraw-Hill, Inc., New York in United States.URL
47 
Jankowski, N. and McCluskey, F., 2014, A Review of Phase Change Materials for Vehicle Component Thermal Buffering, Applied Energy, Vol. 113, No. 1, pp. 1525-1561.DOI
48 
Kenisarin, M., 2010, High-temperature Phase Change Materials for Thermal Energy Storage, Renewable and Sustainable Energy Reviews, Vol. 14, No. 3, pp. 955-970.DOI
49 
Zalba, B., Marin, J., Cabeza, L., and Mehling, H., 2003, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Vol. 23, No. 3, pp. 251-283.DOI
50 
Nomura, T., Okinaka, N., and Akiyama, T., 2010, Technology of Latent Heat Storage for High Temperature Application: A Review, ISIJ International, Vol. 50, No. 9, pp. 1229-1239.DOI
51 
Hale, D., Hoover, M., and O’Neill, M., 1971, Phase Change Materials Handbook, NASA Contractor Report: NASA CR-61363.URL
52 
Sharma, A., Tyagi, V., Chen, C., and Buddhi, D., 2009, Review on Thermal Energy Storage with Phase Change Materials and Applications, Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 318-345.DOI
53 
Agyenim, F., Hewitt, N., Eames, P., and Smyth, M., 2010, A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS), Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 615-628.DOI
54 
Chaiyat, N. and Kiatsiriroat, T., 2014, Energy Reduction of Building Air-conditioner with Phase Change Material in Thailand, Case Studies in Thermal Engineering, Vol. 4, No. 11, pp. 175-186.DOI
55 
Johnson, M., 2016, Thermal Storage for Process Steam Generation: The TESIN Project, IEA Working Party on Energy End-use Technologies.URL
56 
Asinger, F., 1968, Paraffins: Chemistry and Technology, Pergamon Press, London in United Kingdom.URL
57 
Himran, S., Suwono, A., and Mansoori, G., 1994, Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium, Energy Sources Journal, Vol. 16, No. 1, pp. 117-128.DOI
58 
Song, H. and Ryou, Y., 1996, Latent Heat Storage Characteristics of Some Paraffins(CnH2n+2) for Thermal Environment Control of Greenhouse, Journal of the Korean Society for Agricultural Machinery, Vol. 21, No. 1, pp. 84-93.URL
59 
Rozanna, D., Chuah, T., Salmiah, A., Choong, T., and Sa’ari, M., 2004, Fatty Acids as Phase Change Materials (PCMs) for Thermal Energy Storage: A Review, International Journal of Green Energy, Vol. 1, No. 4, pp. 495-513.DOI
60 
Yuan, Y., Zhang, N., Tao, W., Cao, X., and He, Y., 2014, Fatty Acids as Phase Change Materials: A Review, Renewable and Sustainable Energy Reviews, Vol. 29, No. 1, pp. 482-498.DOI
61 
Talja, R. and Roos, Y., 2001, Phase and State Transition Effects on Dielectric, Mechanical, and Thermal Properties of Polyols, Thermochimica Acta, Vol. 380, No. 2, pp. 109-121.DOI
62 
Kubota, M., Ona, E., Watanabe, F., Matsuda, H., Hidaka, H., and Kakiuchi, H., 2007, Studies on Phase Change Characteristics of Binary Mixtures of Erythritol and MgCl2․6H2O, Journal of Chemical Engineering of Japan, Vol. 40, No. 1, pp. 80-84.DOI
63 
Lane, G., 1992, Phase Change Materials for Energy Storage Nucleation to Prevent Supercooling, Solar Energy Materials and Solar Cells, Vol. 27, No. 2, pp. 135-160.DOI
64 
Evans, A., He, M., Hutchinson, J., and Shaw, M., 2001, Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression during Power Pulses, Journal of Electronic Packaging, Vol. 123, No. 3, pp. 211-217.DOI
65 
Shamberger, P. and Bruno, N., 2020, Review of Metallic Phase Change Materials for High Heat Flux Transient Thermal Management Applications, Applied Energy, Vol. 258, No. 1, p. 113955.DOI
66 
Fernandez, A., Barreneche, C., Belusko, M., Segarra, M,. Bruno, F., and Cabeza, L., 2017, Considerations for the Use of Metal Alloys as Phase Change Materials for High Temperature Applications, Solar Energy Materials and Solar Cells, Vol. 171, No. 11, pp. 275-281.URL
67 
Bauer, T., Laing, D., and Tamme, R., 2012, Characterization of Sodium Nitrate as Phase Change Material, International Journal of ThermoPhysics, Vol. 33, No. 1, pp. 91-104.DOI
68 
Wei, G., Wang, G., Xu, C., Ju, X., Xing, L., Du, X., and Yang, Y., 2018, Selection Principles and Thermophysical Properties of High Temperature Phase Change Materials for Thermal Energy Storage: A Review, Renewable and Sustainable Energy Reviews, Vol. 81 Part 2, No. 1, pp. 1771-1786.DOI
69 
Available at: <https://www.hitachi-hightech.com/global/products/science/tech/ana/thermal/descriptions>, 2022.URL
70 
Micheals, A., 2013, Materials Analysis and Failure Analysis 2nd edition, Encyclopedia of Forensic Science, Academic Press, pp. 483-493.URL
71 
Kenisarin, M., 2014, Thermophysical Properties of Some Organic Phase Change Materials for Latent Heat Storage. A Review, Solar Energy, Vol. 107, No. 9, pp. 553-575.DOI