Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering

Korean Journal of Air-Conditioning and Refrigeration Engineering

ISO Journal TitleKorean J. Air-Cond. Refrig. Eng.
  • Open Access, Monthly
Open Access Monthly
  • ISSN : 1229-6422 (Print)
  • ISSN : 2465-7611 (Online)

References

1 
Ministry of Environment, 2019, National Greenhouse Gas Inventory Report of Korea, 11-1480906-000002-10.URL
2 
International Energy Agency, 2021, Net Zero by 2050: A Roadmap for the Global Energy Sector.URL
3 
Lee, H. and Yu, J., 2023, A Study on Latent Heat Energy Storage Technology for Reduction of Fossil Fuel Consumption in Combustion Systems: Part I Market Size of Thermal Storage, Development Level, and Evaluation of Phase Change Materials, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 35, No. 1, pp. 28-43.URL
4 
Kenisarin, M., Mahkamov, K., Costa, S., and Makhkamova, I., 2020, Melting and Solidification of PCMs inside a Spherical Capsule: A Critical Review, Journal of Energy Storage, Vol. 27, No. 2, p. 101082.DOI
5 
Khodadadi, J. and Zhang, Y., 2001, Effects of Buoyancy-driven Convection on Melting within Spherical Containers, International Journal of Heat and Mass Transfer, Vol. 44, No. 8, pp. 1605-1618.DOI
6 
Andreozzi, A., Iasiello, M., and Tucci, C., 2021, Numerical Investigation of a Phase Change Material Including Natural Convection Effects, Energies, Vol. 14, p. 348.DOI
7 
Yildiz, C., Arici, M., Nizetic, S., and Shahsavar, A., 2020, Numerical Investigation of Natural Convection Behavior of Molten PCM in an Enclosure Having Rectangular and Tree-like Branching Fins, Energy, Vol. 207, No. 9, p. 118223.DOI
8 
Taghilou, M. and Khavasi, E., 2020, Thermal Behavior of a PCM Filled Heat Sink: The Contrast Between Ambient Heat Convection and Heat Thermal Storage, Applied Thermal Engineering, Vol. 174, No. 6, p. 115273.DOI
9 
Kant, K., Shukla, A., Sharma, A., and Biwole, P., 2018, Melting and Solidification Behaviour of Phase Change Materials with Cyclic Heating and Cooling, Journal of Energy Storage, Vol. 15, No. 2, pp. 274-282.DOI
10 
Tan, F., 2008, Constrained and Unconstrained Melting inside a Sphere, International Communications in Heat and Mass Transfer, Vol. 35, No. 4, pp. 466-475.DOI
11 
Dukhan, W., Dhaidan, N., and Al-Hattab, T., 2020, Experimental Investigation of the Horizontal Double Pipe Heat Exchanger Utilized Phase Change Material, IOP Conference Series: Materials Science and Engineering, Vol. 671, p. 012148.DOI
12 
Ebadi, S., Al-Jethelah, M., Tasnim, S., and Mahmud, S., 2018, An Investigation of the Melting Process of RT-35 Filled Circular Thermal Energy Storage System, De Gruyter, Vol. 16, No. 1, pp. 574-580.DOI
13 
Fan, L. and Khodadadi, J., 2011, Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review, Renewable and Sustainable Energy Reviews, Vol. 15, No. 1, pp. 24-46.DOI
14 
Safari, V., Abolghasemi, H., and Kamkari, B., 2021, Experimental and Numerical Investigations of Thermal Performance Enhancement in a Latent Heat Storage Heat Exchanger Using Bifurcated and Straight Fins, Renewable Energy, Vol. 174, No. 8, pp. 102-121.DOI
15 
Johnson, M., Vogel, J., Hempel, M., Hachmann, B., and Dengel, A., 2017, Design of High Temperature Thermal Energy Storage for High Power Levels, Sustainable Cities and Society, Vol. 35, No. 11, pp. 758-763.DOI
16 
Tay, N., Bruno, F., and Belusko, M., 2013, Comparison of Pinned and Finned Tubes in a Phase Change Thermal Energy Storage System using CFD, Applied Energy, Vol. 104, No. 4, pp. 79-86.DOI
17 
Ahmed, S., Abderrahmane, A., Saeed, A., Guedri, K., Mourad, A., Younes, O., Botmart, T., and Shah, N., 2022, Melting Enhancement of PCM in a Finned Tube Latent Heat Thermal Energy Storage, Nature Scientific Reports, Vol. 12, p. 11521.DOI
18 
Mahdi, J. and Nsofor, E., 2018, Solidification Enhancement of PCM in a Triplex-tube Thermal Energy Storage System with Nanoparticles and Fins, Applied Energy, Vol. 211, No. 2, pp. 975-986.DOI
19 
Demirkiran, I., Rocha, L., and Cetkin, E., 2022, Emergence of Asymmetric Straight and Branched Fins in Horizontally Oriented Latent Heat Thermal Energy Storage Units, International Journal of Heat and Mass Transfer, Vol. 189, No. 6, p. 122726.DOI
20 
Park, D., Jeong, B., Kim, D., Lee, J., Gu, J., and Kim, D., 2019, Numerical Study on Melting Characteristics of PCM in a Fin Tube Type Heat-ESS, Journal of Environmental and Thermal Engineering, Vol. 14, No. 1, pp. 30-42.URL
21 
Rathod, M. and Banerjee, J., 2015, Thermal Performance Enhancement of Shell and Tube Latent Heat Storage Unit using Longitudinal Fins, Applied Thermal Engineering, Vol. 75, No. 1, pp. 1084-1092.DOI
22 
Johnson, M., Hubner, S., Braun, M., Martin, C., Fiß, M., Hachmann, B., Schonberger, M., and Eck, M., 2018, Assembly and Attachment Methods for Extended Aluminum Fins onto Steel Tubes for High Temperature Latent Heat Storage Units, Applied Thermal Engineering, Vol. 144, No. 11, pp. 96-105.DOI
23 
Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F., 2014, Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths, Nano Letters, Vol. 14, No. 11, pp. 6109-6114.DOI
24 
Choi, D., Lee, J., Hong, H., and Kang, Y., 2014, Thermal Conductivity and Heat Transfer Performance Enhancement of Phase Change Materials (PCM) Containing Carbon Additives for Heat Storage Application, International Journal of Refrigeration, Vol. 42, No. 6, pp. 112-120.DOI
25 
Al-Jethelah, M., Tasnim, S., Mahmud, S., and Dutta, A., 2018, Nano-PCM Filled Energy Storage System for Solar-thermal Applications, Renewable Energy, Vol. 126, No. 10, pp. 137-155.DOI
26 
Shchukina, E., Graham, M., Zheng, Z., and Shchukin, D., 2018, Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems, Chemical Society Reviews, Vol. 47, pp. 4156-4175.DOI
27 
Kardam, A., Narayanan, S., Bhardwaj, N., Madhwal, D., Shukla, P., Verma, A., and Jain, V., 2015, Ultrafast Thermal Charging of Inorganic Nano-phase Change Material Composites for Solar Thermal Energy Storage, RSC Advances, Vol. 5, pp. 56541-56548.DOI
28 
Fang, X., Fan, L., Ding, Q., Wang, X., Yao, X., Hou, J., Yu, Z., Cheng, G., Hu, Y., and Cen, K., 2013, Increased Thermal Conductivity of Eicosane-based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets, Energy & Fuels, Vol. 27, pp. 4041-4047.DOI
29 
Harish, S., Orejon, D., Takata, Y., and Kohno, M., 2017, Enhanced Thermal Conductivity of Phase Change Nanocomposite in Solid and Liquid State with Various Carbon Nano Inclusions, Applied Thermal Engineering, Vol. 114, No. 3, pp. 1240-1246.DOI
30 
Mehrali, M., Latibari, S., Mehrali, M., Mahlia, T., Sadeghinezhad, E., and Metselaar, H., 2014, Preparation of Nitrogen-doped Graphene/Palmitic Acid Shape Stabilized Composite Phase Change Material with Remarkable Thermal Properties for Thermal Energy Storage, Applied Energy, Vol. 135, No. 12, pp. 339-349.DOI
31 
Ji, H., Sellan, D., Pettes, M., Kong, X., Ji, J., Shi, L., and Ruoff, R., 2014, Enhanced Thermal Conductivity of Phase Change Materials with Ultrathin-graphite Foams for Thermal Energy Storage, Energy & Environmental Science, Vol. 7, pp. 1185-1192.DOI
32 
Fang, G., Zhao, M., and Sun, P., 2022, Experimental Study on the Thermal Properties of a Fatty Acid-modified Graphite Composite Phase Change Material Dispersion System, Journal of Energy Storage, Vol. 53, No. 9, p. 105108.DOI
33 
Al-Ahmed, A., Sari, A., Mazumder, M., Salhi, B., Hekimoglu, G., Al-Sulaiman, F., and Inamuddin, 2020, Thermal Energy Storage and Thermal Conductivity Properties of Fatty Acid/Fatty Acid-grafted-CNTs and Fatty Acid/CNTs as Novel Composite Phase Change Materials, Vol. 10, Nature Scientific Reports, p. 15388.DOI
34 
Qiu, J., Huo, D., and Xia, Y., 2020, Phase-Change Materials for Controlled Release and Related Applications, Advanced Materials, Vol. 32, No. 25, p. 2000660.DOI
35 
Tafrishi, H., Sadeghzadeh, S., and Ahmadi, R., 2022, Molecular Dynamics Simulations of Phase Change Materials for Thermal Energy Storage: A Review, RSC Advances, Vol. 12, pp. 14776-14807.DOI
36 
Luo, T. and Lloyd, R., 2012, Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study, Advanced Functional Materials, Vol. 22, No. 12, pp. 2495-2502.DOI
37 
Kalapala, L. and Devanuri, J., 2018, Influence of Operational and Design Parameters on the Performance of a PCM based Heat Exchanger for Thermal Energy Storage - A Review, Journal of Energy Storage, Vol. 20, No. 12, pp. 497-519.DOI
38 
Seddegh, S., Wang, X., and Henderson, A., 2016, A Comparative Study of Thermal Behaviour of a Horizontal and Vertical Shell-and-tube Energy Storage using Phase Change Materials, Applied Thermal Engineering, Vol. 93, No. 1, pp. 348-358.DOI
39 
Longeon, M., Soupart, A., Fourmigue, J., Bruch, A., and Marty, P., 2013, Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection, Applied Energy, Vol. 112, No. 12, pp. 175-184.DOI
40 
Kuravi, S., Trahan, J., Goswami, D., Rahman, M., and Stefanakos, E., 2013, Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants, Progress in Energy and Combustion Science, Vol. 39, No. 4, pp. 285-319.DOI
41 
Laing, D., Bahl, C., Bauer, T., Lehmann, D., and Steinmann, W., 2011, Thermal Energy Storage for Direct Steam Generation, Solar Energy, Vol. 85, No. 4, pp. 627-633.DOI
42 
Garcia, P., Vuillerme, V., Olcese, M., and Mourchid, N., 2016, Design and Modelling of an Innovative Three-stage Thermal Storage System for Direct Steam Generation CSP Plants, AIP Conference Proceedings, Vol. 1734, p. 050015.DOI
43 
Sari, A. and Kaygusuz, K., 2002, Thermal Performance of a Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated in the Annulus of Two Concentric Pipes, Solar Energy, Vol. 72, No. 6, pp. 493-504.DOI
44 
Johnson, M., Vogel, J., Hempel, M., Dengel, A., Seitz, M., and Hachmann, B., 2015, High Temperature Latent Heat Thermal Energy Storage Integration in a Co-gen Plant, Energy Procedia, Vol. 73, No. 6, pp. 281-288.DOI
45 
Johnson, M., 2016, Thermal Storage for Process Steam Generation: The TESIN Project, IEA Working Party on Energy End-use Technologies.URL
46 
Johnson, M., Hachmann, B., Dengel, A., Fiß, M., Hempel, M., and Bauer, D., 2018, Design and Integration of High Temperature Latent Heat Thermal Energy Storage for High Power Levels, Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Vol. 6B: Energy, pp. IMECE2018-86281, V06BT08A047 (6 pages).DOI
47 
Johnson, M., Dengel, A., Hachmann, B., Fiß, M., and Bauer, D., 2019, Large-scale High Temperature and Power Latent Heat Storage Unit Development, AIP Conference Proceedings, Vol. 2126, p. 200023.DOI
48 
Johnson, M., Fiß, M., Dengel, A., and Bauer, D., 2021, Commissioning of High Temperature Thermal Energy Storage for High Power Levels, Proceedings of the IEA-ECES.URL
49 
Lee, H., Jeong, H., Park, D., and Park, S., 2021, A Study on Dynamic Model of Thermal Energy Storage System using PCM, Proceedings of the Korean Society of Mechanical Engineers, pp. 826-828.URL
50 
Jeong, H., Lee, H., Lee, K., and Park, D., 2021, A New Method to Reduce Start-up Time of Thermal Power Plant using Latent Heat Storage System, Proceedings of the Korean Society of Mechanical Engineers, pp. 212-213.URL
51 
Jeong, H. and Park, D., 2022, Application of Longitudinal Fin to Latent Heat Storage System for Enhancement of Heat Transfer Rate during Heat Charging and Discharging Processes, Proceedings of the Korean Society of Mechanical Engineers, p. 199.URL
52 
Park, D., Jeong, H., Lee, D., Chung, D., and Kang, C., 2021, A Study on Thermal Analysis of Cascade Heat Storages for the Reduction of Preheating Load in Incineration Facilities, Proceedings of the Korean Society of Mechanical Engineers.URL