Title |
Characteristic Analyis of Voltage Sags Due to Faulted Distribution Lines |
Authors |
Sung Duck, Kim ; Madhat M . MorcosMadhat M . Morcos |
Abstract |
Voltage sags caused by line faults in transmission and distribution lines have become one of the most important power quality problems facing industrial customers and utilities. Voltage sags are normally described by characteristics of both magnitude and duration, but phase angle shifts should be taken account in identifying sag phenomena and finding their solutions. In this paper, voltage sags due to line faults such as three phase-to-ground, single line-to-ground, and line-to-line faults are characterized by using symmetrical component analysis, for fault impedance variations. Voltage sags and their effect on the magnitude and phase angle are examined. Balanced sags of three phase-to-ground faults show that voltages and currents are changed with equivalent levels to all phases and the zero sequence components become zero. However, for unbalanced faults such as single line-to-ground and line-to-line faults, voltage sags give different magnitude variations and phase angle shifts for each phase. In order to verify the analyzed results, some simulations based on power circuit models are also discussed. |