Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.
Title Development of Fault Detection Method for a Transformer Using Neural Network
Authors Il-Nam Kim ; Nam-Ho Kim
Page pp.43-50
ISSN 1225-1135
Abstract This paper presents a fault detecting method for a power transformer based upon a neural network. To maintain a normal relay operating conditions, external winding faults of a power transformer and magnetic inrush have been tested under consideration of the EMTP/ATP software and internal faults of power transformer have been tested by the EMTP/BCTRAN software. The neural network has been evaluated by the proposed fault. Input variables of the neural network for the proposed model can be obtained from fundamental currents, restraining and operating currents. This algorithm uses back-propagation and the ratio of a restraining current and an operating current as relay input parameters. The ratio may enhance the fault detection since the restraining currents increase rapidly at external faults. The proposed detecting method has been applied to the practical relay systems for transformer protection. As a result, the proposed detecting method based on the neural network has been shown to have better characteristics.