Mobile QR Code QR CODE : Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

Journal of the Korean Institute of Illuminating and Electrical Installation Engineers

ISO Journal TitleJ Korean Inst. IIIum. Electr. Install. Eng.
Title Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions
Authors Gueng-Hyun Nam ; Na-Young Lee ; Hyo-Sang Cho ; Guem-Bae Cho
Page pp.38-45
ISSN 1225-1135
Keywords Flux-lock type SFCL ; Open-loop and closed-loop iron core ; Power burden
Abstract The superconducting fault current limiters (SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the open-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.