Keywords |
USPR ; Chirped Waveform ; Waveguide ; Frequency Bandwidth ; Impulse Response |
Abstract |
In ultrashort-pulse reflectometry (USPR), a chirped waveform transformed from the USPR source impulse signal via waveguide makes it possible to employ millimeter-wave mixers for the frequency up-conversion process. Consequently, the frequency bandwidth of the USPR system is sufficiently wide to cover a large portion of the electron density profile of the plasma. Some physical aspects of the chirped waveform, such as maximum amplitude and length, are critical factors to determine the performance of the system. In this paper, the propagation of the USPR impulse signal through a rectangular waveguide is numerically studied to derive the chirped waveform using the impulse response of the waveguide. The results of numerical computation show that the chirped waveform significantly depends on the waveguide cutoff frequency as well as the waveguide length. |